Browse > Article

Electricity Generation from Dairy Wastewater Using Microbial Fuel Cell  

Roh, Sung-Hee (Department of Chemical and Biochemical Engineering, Chosun University)
Lee, Sung-Wook (Department of Chemical and Biological Engineering, Korea University)
Kim, Kyung-Ryang (Nuclear Fuel Cycle Process Development Division, Korea Atomic Energy Research Institute)
Kim, Sun-Il (Department of Chemical and Biochemical Engineering, Chosun University)
Publication Information
Applied Chemistry for Engineering / v.23, no.3, 2012 , pp. 297-301 More about this Journal
Abstract
Microbial fuel cell (MFC) is the major of bio-electrochemical system which can convert biomass spontaneously into electricity through the metabolic activity of the microorganisms. In this study, we used an activated sludge as a microbial inoculum and then investigated the feasibility of using dairy wastewater as a possible substrate for generating electricity in MFC. To examine the performance of MFC as power generator, the characteristics on cell potentials, power density, cyclic voltammetric analysis and sustainable power estimation were evaluated for dairy wastewater. The maximum power density of $40\;mW/m^2$was achieved when the dairy wastewater containing 2650 mg/L COD was used, leading to the removal of 88% of the COD. The results from this study demonstrate the feasibility of using MFC technology to generate electricity while simultaneously treating dairy wastewater effectively.
Keywords
dairy wastewater; microbial fuel cell; electricity; power density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Rabaey and W. Verstraete, Trends Biotech., 23, 291 (2005).   DOI   ScienceOn
2 Z. Du, H. Li, and T. Gu, Biotech. Advances, 25, 464 (2007).   DOI   ScienceOn
3 Y. K. Kim, S. Y. Nam, and K. S. Kim, J. Korean Ind. Eng. Chem., 17, 22 (2006).
4 M. Rahimnejad, A. A. Ghoreyshi, G. Najafpour, and T. Jafary, Appl. Energy, 88, 3999 (2011).   DOI   ScienceOn
5 B. E. Logan and J. M. Regan, Trends Microbiol., 14, 512 (2006).   DOI   ScienceOn
6 P. S. Nigam and A. Singh, Progress in Energy and Combustion Sci., 37, 52 (2011).   DOI   ScienceOn
7 D. R. Keshwani and J. J. Chen, Bioresource Tech., 100, 1515 (2009).   DOI   ScienceOn
8 S. T. Oh, J. R. Kim, G. C. Premier, T. H. Lee, C. Kim, and W. T. Sloan, Biotech. Advances, 28, 871 (2010).   DOI   ScienceOn
9 S. I. Kim, S. W. Lee, K. R. Kim, J. W. Lee, and S. H. Roh, J. Korean Ind. Eng. Chem., 20, 213 (2009).
10 D. R. Bond, D. E. Holmes, L. M. Tender, and D. R. Lovley, Science, 295, 483 (2002).   DOI   ScienceOn
11 S. E. Oh, B. Min, and B. E. Logan, Environ. Sci. Tech., 38, 4900 (2004).   DOI   ScienceOn
12 H. Liu, R. Ramnarayan, and B. E. Logan, Environ. Sci. Tech., 38, 2281 (2004).   DOI   ScienceOn
13 J. K. Jang, T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim, Process Biochem., 39, 1007 (2004).   DOI   ScienceOn
14 S. E. Oh and B. E. Logan, Water Res., 39, 4673 (2005).   DOI   ScienceOn
15 APHA, Standards Methods for the Examination of Water and Wastewater, 20thed. American Public Health Association, Washington DC. (1998).
16 H. Liu, S. Cheng, and B. E. Logan, Environ. Sci. Tech., 39, 5488 (2005).   DOI   ScienceOn
17 K, Rabaey, N. Boon, S. D. Sicliano, M. Vwrhaege, and W. Verstraete, Appl. Environ. Microbiol., 70, 5373 (2004).   DOI   ScienceOn
18 A. Larrosa-Guerrero, K. Scott, I. M. Head, F. Mateo, A. Ginesta, and C. Godinez, Fuel, 89, 3985 (2010).   DOI   ScienceOn
19 J. R. Kim, B. Min, and B. E. Logan, Appl. Microbial. Biotech., 68, 23 (2005).   DOI   ScienceOn
20 B. K. Min, J. R. Kim, S. E. Oh, J. M. Regan, and B. E. Logan, Water Res., 39, 4961 (2005).   DOI   ScienceOn
21 B. E. Logan, C. Murano, K. Scott, N. D. Gray, and L. M. Head, Water Res., 39, 942 (2005).   DOI   ScienceOn
22 D. R. Bond and D. R. Lovley, Appl. Environ. Microbiol., 69, 1548 (2003).   DOI   ScienceOn
23 G. Reguera, K. P. Nevin, J. S. Nicoll, S. F. Covalla, T. L. Woodard, and D. R. Lovley, Appl. Environ. Microbiol., 72, 7345 (2006).   DOI   ScienceOn