Browse > Article
http://dx.doi.org/10.4014/jmb.1102.02024

Cloning, Expression, and Characterization of a New Xylanase from Alkalophilic Paenibacillus sp. 12-11  

Zhao, Yanyu (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Meng, Kun (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Luo, Huiying (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Yang, Peilong (Department of Microbial Engineering, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Shi, Pengjun (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Huang, Huoqing (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Bai, Yingguo (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Yao, Bin (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.8, 2011 , pp. 861-868 More about this Journal
Abstract
A xylanase gene, xyn7c, was cloned from Paenibacillus sp. 12-11, an alkalophilic strain isolated from the alkaline wastewater sludge of a paper mill, and expressed in Escherichia coli. The full-length gene consists of 1,296 bp and encodes a mature protein of 400 residues (excluding the putative signal peptide) that belongs to the glycoside hydrolase family 10. The optimal pH of the purified recombinant XYN7C was found to be 8.0, and the enzyme had good pH adaptability at 6.5-8.5 and stability over a broad pH range of 5.0-11.0. XYN7C exhibited maximum activity at $55^{\circ}C$ and was thermostable at $50^{\circ}C$ and below. Using wheat arabinoxylan as the substrate, XYN7C had a high specific activity of 1,886 U/mg, and the apparent $K_m$ and $V_{max}$ values were 1.18 mg/ml and 1,961 ${\mu}mol$/mg/min, respectively. XYN7C also had substrate specificity towards various xylans, and was highly resistant to neutral proteases. The main hydrolysis products of xylans were xylose and xylobiose. These properties make XYN7C a promising candidate to be used in biobleaching, baking, and cotton scouring processes.
Keywords
Alkaline xylanase; Paenibacillus sp.; Escherichia coli; protease resistance;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Qiu, Z., P. Shi, H. Luo, Y. Bai, T. Yuan, P. Yang, S. Liu, and B. Yao. 2010. A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry. Enzyme Microb. Technol. 46: 506-512.   DOI   ScienceOn
2 Roberge, M., F. Shareck, R. Morosoli, D. Kluepfel, and C. Dupont. 1998. Site-directed mutagenesis study of a conserved residue in family 10 glycanases: Histidine 86 of xylanase A from Streptomyces lividans. Protein Eng. 11: 399-404.   DOI
3 Schmidt, A., A. Schlacher, W. Steiner, H. Schwab, and C. Kratky. 1998. Structure of the xylanase from Penicillium simplicissimum. Protein Sci. 7: 2081-2088.   DOI   ScienceOn
4 Wang, J., Y. Bai, P. Yang, P. Shi, H. Luo, K. Meng, H. Huang, J. Yin, and B. Yao. 2010. A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range. World J. Microbiol. Biotechnol. 26: 917-924.   DOI   ScienceOn
5 Wang, Q., X. Fan, W. Gao, and J. Chen. 2006. Scouring of knitted cotton fabrics with compound enzymes. J. Text. Res. 27: 27-30.
6 Wood, P. J., J. D. Erfle, and R. M. Teather. 1988. Use of complex formation between Congo red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods Enzymol. 160: 59-74.
7 Sudo, M., M. Sakka, T. Kimyra, K. Ratanakhanokchai, and K. Sakka. 2010. Characterization of Paenibacillus curdlanolyticus intracellular xylanase Xyn10B encoded by the xyn10B gene. Biosci. Biotechnol. Biochem. 74: 2358-2360.   DOI   ScienceOn
8 Yu, E. K. C., L. U. L. Tan, M. K. H. Chan, L. Deschatelets, and J. N. Saddler. 1987. Production of thermostable xylanase by a thermophilic fungus, Thermoascus aurantiacus. Enzyme Microb. Technol. 9: 16-24.   DOI   ScienceOn
9 Subramaniyan, S. and P. Prema. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183: 1-7.   DOI   ScienceOn
10 Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: Enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64.   DOI   ScienceOn
11 Sun, H. J., S. Yoshida, Y. Kawabata, N. H. Park, and I. Kusakabe. 2002. Separation of two functional domains of the family F/10 $\beta$-xylanase from Streptomyces olivaceoviridis E-86 limited proteolysis with papain and some of their properties. Biotechnol. Lett. 24: 595-601.   DOI   ScienceOn
12 Wang, G., Y. Wang, P. Yang, H. Luo, H. Huang, P. Shi, K. Meng, and B. Yao. 2010. Molecular detection and diversity of xylanase genes in alpine tundra soil. Appl. Microbiol. Biotechnol. 87: 1383-1393.   DOI   ScienceOn
13 Henrissat, B. and A. Bairoch. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316: 695-696.   DOI
14 Ko, C. H., W. L. Chen, C. H. Tsai, W. N. Jane, C. C. Liu, and J. Tu. 2007. Paenibacillus campinasensis BL11: A wood materialutilizing bacterial strain isolated from black liquor. Bioresour. Technol. 98: 2727-2733.   DOI   ScienceOn
15 Huang, J., G. Wang, and L. Xiao. 2006. Cloning, sequencing and expression of the xylanase gene from a Bacillus subtilis strain B10 in Escherichia coli. Bioresour. Technol. 97: 802-808.   DOI   ScienceOn
16 Hwang, I. T., H. K. Lim, H. Y. Song, S. J. Cho, J. S. Chang, and N. J. Park. 2010. Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL- 001. Biotechnol. Adv. 28: 594-601.   DOI   ScienceOn
17 Kim, D. Y., M. K. Han, H. W. Oh, K. S. Bae, T. S. Jeong, S. U. Kim, et al. 2010. Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: Biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. Bioresour. Technol. 101: 8814-8821.   DOI   ScienceOn
18 Christov, L. P., G. Szakacs, and H. Balakrishnan. 1999. Production, partial characterization and use of fungal cellulase-free xylanases in pulp bleaching. Process Biochem. 34: 511-517.   DOI   ScienceOn
19 Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.   DOI   ScienceOn
20 Gallardo, O., P. Diaz, and F. I. J. Pastor. 2003. Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: A new subclass of family 10 xylanases. Appl. Microbiol. Biotechnol. 61: 226-233.   DOI
21 Gibbs, M. D., R. A. Reeves, and P. L. Bergquist. 1995. Cloning, sequencing, and expression of a xylanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B. 1 and activity of the enzyme on fiber-bound substrate. Appl. Environ. Microbiol. 61: 4403-4408.
22 Guo, B., X. Chen, C. Sun, B. Zhou, and Y. Zhang. 2009. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-$\beta$-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl. Microbiol. Biotechnol. 84: 1107-1115.   DOI   ScienceOn
23 Caballero, P. A., M. Gómez, and C. M. Rosell. 2007. Improvement of dough rheology, bread quality and bread shelf-life by enzymes combination. J. Food Process Eng. 81: 42-53.   DOI   ScienceOn
24 Bajpai, P. 1999. Application of enzymes in the pulp and paper industry. Biotechnol. Prog. 15: 147-157.   DOI   ScienceOn
25 Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338.   DOI
26 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
27 Liu, Y. and R. F. Whittier. 1995. Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 674-681.   DOI   ScienceOn
28 Li, N., K. Meng, Y. Wang, P. Shi, H. Luo, Y. Bai, P. Yang, and B. Yao. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl. Microbiol. Biotechnol. 80: 231-240.   DOI   ScienceOn
29 Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666.   DOI
30 Liu, L., X. Li, and W. Shao. 2004 Computational analysis of responsible dipeptides for optimum pH in G/11 xylanase. Biochem. Biophys. Res. Commun. 321: 391-396.   DOI   ScienceOn
31 Ossola, M. and Y. M. Galante. 2004. Scouring of flax rove with the aid of enzymes. Enzyme Microb. Technol. 34: 177-186.   DOI   ScienceOn
32 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685.   DOI   ScienceOn
33 Lee, H., D. Shin, N. Cho, H. Kim, S. Shin, S. Im, H. Blaise Lee, S. Chun, and S. Bai. 2000. Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol. Lett. 22: 387-392.   DOI   ScienceOn
34 Maat, J., M. Roza, J. Verbakel, H. Stam, M. J. Santos Da Silva, M. Bosse, et al. 1992. Xylanases and their application in bakery, pp. 349-360. In J. Visser, M. A. Kusters van Someren, G. Beldman, and A. G. J. Voragen (eds.). Xylans and Xylanases. Progress in Biotechnology, No. 7. Elsevier Science Publishers, Amsterdam, The Netherlands.
35 Mamo, G., R. Hatti-Kaul, and B. Mattiasson. 2006. A thermostable alkaline active endo-$\beta$-1-4-xylanase from Bacillus halodurans S7: Purification and characterization. Enzyme Microb. Technol. 39: 1492-1498.   DOI   ScienceOn
36 Mamo, G., M. Thunnissen, R. Hatti-Kaul, and B. Mattiasson. 2009. An alkaline active xylanase: Insights into mechanisms of high pH catalytic adaptation. Biochimie 91: 1187-1196.   DOI   ScienceOn
37 Manikandan, K., A. Bhardwaj, N. Gupta, N. K. Lokanath, A. Ghosh, V. S. Reddy, and S. Ramakumar. 2006. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: Structural insights into alkalophilicity and implications for adaptation to polyextreme conditions. Protein Sci. 15: 1951-1960.   DOI   ScienceOn
38 Mchunu, N. P., S. Singh, and K. Permaul. 2009. Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli. J. Biotechnol. 141: 26- 30.   DOI
39 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
40 Monis, P. T., S. Giglio, and C. P. Saint. 2005. Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal. Biochem. 340: 24-34.   DOI   ScienceOn