• Title/Summary/Keyword: Slot velocity

Search Result 92, Processing Time 0.02 seconds

A Study on Improvement of Ventilation Efficiency of Multi-Stage Slot Hood (외부식 다단형 슬로트 후드의 효율 향상에 관한 연구)

  • Kim, Hyun Seok;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.2
    • /
    • pp.204-212
    • /
    • 1993
  • This study was conducted to evaluate ventilation efficiency of 4-stage slot hood by variation of slot width, flow rate, hood size and baffle size. The slot velocity, control velocity and plenum velocity were related to slot width and the distance between source of contamination and hood. The results obtained from laboratory experiment for local exhaust ventilation systems were as follows ; 1. When slot widths were constant(equally changed) and the velocity was 6-10 m/s, the slot velocity from 1st slot to 4th slot gradually decreased. As the slot width-to-slot length ratio(WLR) decreased, the slot velocity of each stage increased. But if WLR value was less than 0.04, the slot velocity decreased. 2. When slot velocity exceeded 10 m/s with constant slot widths, the slot velocity of each stage was uniform. 3. When the slot velocity was uniform within 10 m/s and the first slot width was 14-20 mm, the slot width ratio between 1st slot and each of three other slots were 1, 1.25, 1.5 and 3.0, respectively. 4. The slot and plenum velocity were uniform when exhaust flow rate changed from 14 to $19m^3/min$ and there were no hood splitter vanes. 5. When the slot velocity at each stage was uniform, the control velocity at site 30 cm away from hood No.2 increased from 0.15-0.30 to 0.25-0.45 m/s and the control distance from 20 to 30 cm(about 1.5 times).

  • PDF

A Numerical Study on the Effective Dimension in Slot-drilling Method (슬롯드릴링공법의 유효제원에 관한 수치해석적 연구)

  • Yoon, Ji-Sun;Lee, Jee-Hoon;Son, Sung-Hoon
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.50-58
    • /
    • 2010
  • This study explores the slot-drilling method that has not yet enough been studied in Korea and intends to provide a theoretical framework for putting the method into practice in a construction site. The possible reduction of ground vibration by implementing slot-drilling methods is addressed. Two main subjects dealt with include the variation of vibration velocity that is based on the distance between the slot-drilling and the epicenter of blasting and the analysis of appropriate effective dimension of slot-drilling width and height to control blasting vibration. This study shows that effect of vibration reduction decreases when distance of the slot-drilling and the epicenter of blasting is getting larger and also reveals that there is a correlation between the slot size and the vibration velocity at any point.

Concentration Gradient Effects on Liftoff Characteristics of Triple Flame on a Slot Burner (슬롯 버너에서 농도 구배가 삼지 화염의 부상 특성에 미치는 영향)

  • Seo, Jeong-Il;Kim, Nam-Il;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.99-105
    • /
    • 2002
  • The concentration gradient effects on triple flame have been studied experimentally using a slot burner in order to stabilize stationary triple flame in coflowing stream. By means of contraction we generate the coflowing stream with uniform velocity and linear concentration gradient at the outlet of the slot. In this paper we investigated the response of the triple flame. to the concentration gradient, like the stability, the liftoff height, and the structure of triple flame. Flow velocity is measured with Laser Doppler Velocimetry. As the concentration gradient increases. the flame propagation velocity in immediately upstream triple point increases until the liftoff height of triple flame becomes minimum, and then decreases.

  • PDF

2-Dimensional Film Cooling Characteristics with the Height Variation of a Stepped Slot Exit (계단형 슬롯출구의 높낮이 변화에 따른 2차원 막냉각 특성)

  • Son, Chang-Ho;Kim, Tae-Mook;Lee, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.46-54
    • /
    • 2005
  • Film cooling characteristics has been examined numerically for the height variation of a stepped slot exit. In this study, the upstream wall height of the stepped slot exit varies from -2d (d = slot width) to 3d, blowing ratio ranges from 0.5 to 3, and injection angles are $15^{\circ},\;30^{\circ},\;and\;45^{\circ}$. The results showed that film cooling performance was mainly subjected to the magnitude of recirculation region near the downstream-side slot exit as well as the magnitude and the distribution region of turbulent kinetic energy due to the local velocity and momentum differences between the coolant and the main flow near the slot exit. The up-1d type slot at higher blowing ratios over 2 and the flat type slot at lower blowing ratios below 1 have the best film cooling performances, in case of the injection angles of $30^{\circ},\;and\;45^{\circ}$, respectively. Compared with the other injection angles, in case of the injection angles of $15^{\circ}$, the best film cooling performances was shown in even a higher upstream wall (up-3d) at higher blowing ratio like 3 by the gradual reduction of the coolant velocity which minimizes the local velocity differences between the coolant and the main flow near the slot exit.

Analysis and Optimization on Inside Flows of Fluid in Roll-to-Roll Slot-Die Nozzle by CFD Simulation (CFD 해석을 이용한 롤투롤 슬롯-다이 내부 유동 분석 및 최적화)

  • Kim, Seongyong;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.611-616
    • /
    • 2016
  • Computational fluid dynamic simulation based on the ABAQUS software was conducted to observe the inside flow of slot-die nozzle. The slot-die nozzle was modeled as 3-dimensional structure and three significant parameters were determined: inlet velocity of fluid, reservoir angles, number of strips none of which have been mentioned previously in the literature. The design of experiment, full factorial analysis was performed within determined design and process levels. The simulation result shows the inlet fluid velocity is most significant factor for the flows of inside nozzle. As an interaction effect, reservoir angle is closely related with number of strip that should address when the nozzle is designed. Moreover, the optimized values of each determined parameter were obtained as 35 mm/s of inlet velocity, 3 of strip numbers, and $22^{\circ}$ of reservoir angles. Based on these parameters, the outlet velocity was obtained as 0.53% of outlet uniformity which is improved from 8.67% of nominal results.

Design of local exhaust ventilation for preventive maintenance in semiconductor fabrication industry using CFD (전산유체역학을 이용한 반도체 제조공정의 PM 전용 후드 설계 연구)

  • Hong, Jwaryung;Koo, Jae-Han;Park, Chang-Sup;Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.208-216
    • /
    • 2019
  • Objective: The aim of this study is to control residual chemicals or by-products generated in chambers during preventive maintenance (PM) in the semiconductor manufacturing industry. We designed local exhaust ventilation using computational fluid dynamics (CFD). Methods: The air flow characteristics and capture efficiency between rectangular and slot hoods were compared numerically. The software Fluent 18.1 was used to estimate uniform velocity distribution and capture efficiency for contaminants. A metal from group 15 in the periodic table was released at the bottom of the chamber to simulate emissions. Results: The slot hood had a higher capture efficiency than a rectangular hood under the same conditions because the slot hood provided uniform air flow and higher face velocity. Also, there was no rotating swirl in the plenum for slot, that is why slot had better efficiency than rectangular even though they had similar face velocity. With less than 10 slots, the capture efficiencies for contaminants were nearly 95%. The optimum conditions for a hood to achieve high efficiency was 8 to 10 slots and a face velocity over 1 m/s. Conclusions: Well-designed ventilation systems must consider both efficiency and convenience. For this study, a slot hood that had high capture efficiency and no work disturbance was designed. This will contribute to protection of the worker's health in a PM area and other areas as well. Also, this study confirms the possibility of the application CFD in the semiconductor fabrication industry.

Resonance & Vibration Velocity Characteristics of the Wind-mill type Stator of Ultrasonic Motor (풍차형 초음파 전동기 고정자의 공전 및 전동 속도 특성)

  • 박만주;김영균;김진수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.231-234
    • /
    • 1998
  • In this study, the wind-mill type ultrasonic motor was fabricated, and then resonant frequency and vibration velocity characteristics of the stator were measured. Brass metal was pressed with umbrella-type using metal mold, then slot of 4 kind was processed in each of thickness. Among sixteen's stators, resonant frequency on vibration velocity was decreased remarkably in stator of higher resonant point, but resonant frequency on vibration velocity wasn't almost changed at lower resonant point of stator. The thickener thickness of elastic body, vibration velocity was decreased. The more slot of elastic body, vibration velocity was increased Applied voltage was changed from 10$V_{max}$ to 100$V_{max}$. Maximum vibration velocity value was 2.0[m/s].

  • PDF

Study on Fluid Distribution in Slot-die Head Using CFD (CFD를 이용한 슬롯 다이 헤드 내부의 유체 분포 분석)

  • Yoo, Suho;Kim, Gieun;Shin, Youngkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.39-44
    • /
    • 2022
  • Using a CFD (computational fluid dynamics) simulation tool, we have offered a design guideline of a slot-die head having a simple T-shaped cavity through an analysis of the fluid dynamics in terms of cavity pressure and outlet velocity, which affect the uniformity of coated thin films. We have visualized the fluid flow with a transparent slot-die head where poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is injected. We have shown that the fluid dynamics inside the slot-die head depends sensitively on the cavity depth, cavity length, land length, and channel gap (i.e., shim thickness). Of those, the channel gap is the most critical parameter that determines the uniformity of the pressure and velocity distributions. A pressure drop inside the cavity is shown to be reduced with decreasing shim thickness. To quantify it, we have also calculated the coefficient of variation (CV). In accordance with Hagen-Poiseuille's laws and electron-hydraulic analogy, the CV value is decreased with increasing cavity depth, cavity length, and land length.

Film Cooling Characteristics with Sunk or Lifted Upstream Wall (슬롯출구 상류면의 상승과 하강에 따른 막냉각 특성)

  • Rho, Suk-Man;Son, Chang-Ho;Lee, Geun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.377-381
    • /
    • 2001
  • Film cooling characteristics has been investigated numerically with the aid of FLUENT software for the sunk or the lifted upstream wall from the slot injection exit. In this study, with the fixed blowing ratio of 1 and the fixed coolant injection angle of $30^{\circ}$, the downstream flow field and the downstream temperature field were examined in terms of velocity vector, turbulent kinetic energy, temperature contours, and downstream wall temperature. Upstream wall was sunk or lifted from 1d to 5d(d=slot width). The result shows that the up-Id upstream wall has the best film cooling performance. This is due to the fact that the up-1d upstream wall configuration reduces velocity gradient just enough to minimize the turbulent mixing between the mainstream and the coolant just off the slot exit.

  • PDF

Numerical Simulation of Two-Dimensional Impinging Slot Jet (정상상태의 이차원 슬롯 충돌제트에 관한 수치 해석)

  • Park, Tae-Hyun;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.603-608
    • /
    • 2000
  • The characteristics of laminar and turbulent slot impinging jet flows are examined using segregated FEM with SUPG. Turbulent flows are modeled using $Wilcox^{(1)}$ $k-\;{\omega}$ turbulence model. The results are validated by comparing with velocity field of the existing experimental data. The distance of the target plate from the nozzle varies between 2, 4 and 5 times the slot jet width. Present study shows that the $k-\;{\omega}$ model gives results which agree well with the existing experimental data. In turbulence flows, the velocity profile of present calculation is more accurate than the existing numerical calculations. In laminar flows, We found tertiary vortex which was not found in the previous numerical study by M. $chen^{(6)}$ et al due to the numerical difference.

  • PDF