• Title/Summary/Keyword: Slip length

Search Result 251, Processing Time 0.031 seconds

Effect of Bending Angle and Embedment Length on the Bond Characteristics of V-shaped Tie Reinforcement (절곡각 및 묻힘길이에 따른 V형 띠철근의 부착특성)

  • Kim, Won-Woo;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.465-471
    • /
    • 2015
  • This study proposed V-shaped tie bar method as an alternative of internal cross-tie for reinforced concrete columns in order to enhance the constructability and confinement effectiveness of the lateral tie bars. A total of 35 pull-out specimens were prepared with the parameters of concrete compressive strength and bending angle and embedment length of the V-shaped bar to examine the bond stress-slip relationship of the V-shaped tie bar. The bond strength of the V-shaped tie bars with the bending angle not exceeding $60^{\circ}$ was higher than the predictions obtained from the equations of CEB-FIP provision. Considering the constructability and bond behavior of the V-shpaed tie bar, the bending angle and embedment length of such bar can be optimally recommended as $45^{\circ}$ and 6db, respectively, where db is the diameter of the tie bar.

Design Idea of Suspension for Traction Wheel of Novel High Speed Towing Carriage (초고속선 실험을 위한 신형식 예인전차의 현가장치 설계시안)

  • Koo, Seong-Pil;Kim, Hyochul;Ham, Yeun-Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.407-413
    • /
    • 2013
  • In the conventional towing tank, the ordinary towing carriage has a speed barrier which caused not only by the limitation of the length of towing tank but also the limitation of acceleration. Therefore the length of the towing tank should be decided carefully from the planning stage of the towing tank construction. Consequently the acceleration of the towing carriage should be taken less than 0.06g practically to avoid the slip of the wheel on rail. Due to the increasing demand of the high speed experiments on the development of special novel ship, the requirement of the high speed towing carriage is continuously increased recently. When the minimum measuring time of the towing experiment is prescribed as five seconds, the carriage should be accelerated with higher than 0.12 g to get the speed of 18 m/sec even in the towing tank having a length of 400m in length approximately. This means that the requirement of acceleration is bigger than twice of the ordinary practices of carriage acceleration. In such a condition the exerted total power of motor could not converted to traction force for the acceleration of the carriage without slip. To over come these difficulties a pair of horizontal traction wheels are reinforced to each of the ordinary vertical carrier wheel and appropriate suspension system has been devised for the towing tank of super high speed operation. It is believed that the design of novel suspension system adaptable for the high speed acceleration of towing carriage will play a important role as a reference for the remodeling of the towing tank for high speed experiment.

Modelling reinforced concrete beams under mixed shear-tension failure with different continuous FE approaches

  • Marzec, Ireneusz;Skarzynski, Lukasz;Bobinski, Jerzy;Tejchman, Jacek
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.585-612
    • /
    • 2013
  • The paper presents quasi-static numerical simulations of the behaviour of short reinforced concrete beams without shear reinforcement under mixed shear-tension failure using the FEM and four various constitutive continuum models for concrete. First, an isotropic elasto-plastic model with a Drucker-Prager criterion defined in compression and with a Rankine criterion defined in tension was used. Next, an anisotropic smeared crack and isotropic damage model were applied. Finally, an elasto-plastic-damage model was used. To ensure mesh-independent FE results, to describe strain localization in concrete and to capture a deterministic size effect, all models were enhanced in a softening regime by a characteristic length of micro-structure by means of a non-local theory. Bond-slip between concrete and reinforcement was considered. The numerical results were directly compared with the corresponding laboratory tests performed by Walraven and Lehwalter (1994). The advantages and disadvantages of enhanced models to model the reinforced concrete behaviour were outlined.

Predicting the bond between concrete and reinforcing steel at elevated temperatures

  • Aslani, Farhad;Samali, Bijan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.643-660
    • /
    • 2013
  • Reinforced concrete structures are vulnerable to high temperature conditions such as those during a fire. At elevated temperatures, the mechanical properties of concrete and reinforcing steel as well as the bond between steel rebar and concrete may significantly deteriorate. The changes in the bonding behavior may influence the flexibility or the moment capacity of the reinforced concrete structures. The bond strength degradation is required for structural design of fire safety and structural repair after fire. However, the investigation of bonding between rebar and concrete at elevated temperatures is quite difficult in practice. In this study, bond constitutive relationships are developed for normal and high-strength concrete (NSC and HSC) subjected to fire, with the intention of providing efficient modeling and to specify the fire-performance criteria for concrete structures exposed to fire. They are developed for the following purposes at high temperatures: normal and high compressive strength with different type of aggregates, bond strength with different types of embedment length and cooling regimes, bond strength versus to compressive strength with different types of embedment length, and bond stress-slip curve. The proposed relationships at elevated temperature are compared with experimental results.

MICROSCOPIC STUDY ON THE STRUCTURE CHANGE OF COPPER BASED ALLOY TO COLD ROLLING AND ANNEALING (동합금(銅合金)의 조직상(組織像)에 관(關)한 연구(硏究))

  • Kim, Yung-Hai
    • Restorative Dentistry and Endodontics
    • /
    • v.4 no.1
    • /
    • pp.7-9
    • /
    • 1978
  • Brass specimen, copper based alloy was prepared in cubic form about $1cm{\times}1cm{\times}1cm$ in volume. The specimens were mechanically compressed in one direction until the dimension distorted to 20%, 40%, 60% and 80% in length. The compressed specimens with 80% distorted in length were then heat treated in $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$ and $600^{\circ}C$ for 30 minutes. Microscopic examination was made on both compressed and heat treated specimens. The results obtained from the study were as follows: 1. Grain boundary and twin phenomenon was clearly seen in 0% and 20% compressed cases. Slip bands was appeared in 40% cases and distributed equally as well as twin. 2. The first evidence of slip bands was observed in 20% and the bands grew thicker and denser as the compression increased. 3. The density of the bands were reduced after annealing in $200^{\circ}C$ and completely disappeared at $300^{\circ}C$ cases. 4. Recrystallization was noticed unevenly in $300^{\circ}C$ cases and the evidence of twin was observed in these crystallized area. 5. In $400^{\circ}C$ cases the grain boundary was evenly found and the twin phenomenon was clearly observed. Grain boundary and twin was noticeably formed in size according to the annealing temperature increased.

  • PDF

Response of lap splice of reinforcing bars confined by FRP wrapping: modeling approach

  • Thai, Dam Xuan;Pimanmas, Amorn
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.95-110
    • /
    • 2011
  • This paper presents a tri-uniform bond stress model for predicting the lap splice strength of reinforcing bar at the critical bond splitting failure. The proposed bond distribution model consists of three zones, namely, splitting zone, post-splitting zone and yielding zone. In each zone, the bond stress is assumed to be constant. The models for bond strength in each zone are adopted from previous studies. Combining the equilibrium, strain-slip relation and the bond strength model in each zone, the steel stress-slip model can be derived, which can be used in the nonlinear frame analysis of the column. The proposed model is applied to derive explicit equations for predicting the strength of the lap splice strengthened by fiber reinforced polymer (FRP) in both elastic and post-yield ranges. For design purpose, a procedure to calculate the required FRP thickness and the number of FRP sheets is also presented. A parametric investigation was conducted to study the relation between lap splice strength and lap splice length, number and thickness of FRP sheets and the ratio of concrete cover to bar diameter. The study shows that the lap splice strength can be enhanced by increasing one of these parameters: lap splice length, number or thickness of FRP sheets and concrete cover to bar diameter ratio. Verification of the model has been conducted using experimental data available in literature.

Improvement of the cyclic response of RC columns with inadequate lap splices-Experimental and analytical investigation

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.279-293
    • /
    • 2019
  • The overall seismic performance of existing pre 1960-70s reinforced concrete (RC) structures is significantly affected by the inadequate length of columns' lap-spliced reinforcement. Due to this crucial structural deficiency, the cyclic response is dominated by premature bond - slip failure, strength and stiffness degradation, poor energy dissipation capacity and low ductility. Recent earthquakes worldwide highlighted the importance of improving the load transfer mechanism between lap-spliced bars, while it was clearly demonstrated that the failure of lap splices may result in a devastating effect on structural integrity. Extensive experimental and analytical research was carried out herein, to evaluate the effectiveness and reliability of strengthening techniques applied to RC columns with lap-spliced reinforcement and also accurately predict the columns' response during an earthquake. Ten large scale cantilever column subassemblages, representative of columns found in existing pre 1970s RC structures, were constructed and strengthened by steel or RC jacketing. The enhanced specimens were imposed to earthquake-type loading and their lateral response was evaluated with respect to the hysteresis of two original and two control subassemblages. The main variables examined were the lap splice length, the steel jacket width and the amount of additional confinement offered by the jackets. Moreover, an analytical formulation proposed by Tsonos (2007a, 2019) was modified appropriately and applied to the lap splice region, to calculate shear stress developed in the concrete and predict if yielding of reinforcement is achieved. The accuracy of the analytical method was checked against experimental results from both the literature and the experimental work included herein.

Bond behavior between circular steel tube and high-strength concrete after elevated temperatures

  • Ji, Zhou;Zongping, Chen;Maogen, Ban;Yunsheng, Pang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.575-590
    • /
    • 2022
  • In this paper, bond-slip behavior of high strength concrete filled circular steel tube (HSCFCST) after elevated temperatures treatment was studied. 17 specimens were designed for push-out test. The influence was discussed as following parameters: (a) concrete strength, (b) constant temperature, and (c) bond length. The results showed that (1) after elevated temperatures treatment, the bond strength of the HSCFCST specimens increased first and then decreased with temperature rising; (2) the bond strength increased with the increase of concrete strength at room temperature, while the influence subsided after elevated temperatures treatment; (3) the strain of the circular steel tube was distributed exponentially along its length, the stress changed from exponential distribution to uniform distribution with the increase of load; (4) the bond damage process was postponed with the increase of constant temperature; and (5) the energy consumption capacity of the bonding interface increased with the rise of concrete strength and constant temperature. Moreover, computational formulas of ultimate and residual bond strength were obtained by regression, and the bond-slip constitutive models of HSCFCSTs after elevated temperatures was established.

Study of Frictional Behavior of AZ31B Mg Alloy at Elevated Temperature (AZ31B 마그네슘 합금의 온간 마찰 특성 연구)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.160-164
    • /
    • 2018
  • The success of warm forming of Mg alloy sheets is very dependent on its frictional behavior at elevated temperatures. The effects of contact pressure and sliding length on the frictional characteristics of AZ31B Mg alloy sheet were investigated at elevated temperature and at room temperature. The contact pressure range for the friction test was determined through FE analysis of the roof panel which is a candidate for Mg alloy application. According to the experimental results, the frictional behavior of the Mg alloy sheet is equally highly influenced by both sliding length and contact pressure at room temperature. At elevated temperatures, however, the sliding length has a more dominant influence on the frictional characteristics of the Mg alloy sheet than the contact pressure, if the contact pressure is lower than a certain level.

High performance ultrafine-grained Ti-Fe-based alloys with multiple length-scale phases

  • Zhang, Lai-Chang
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.13-29
    • /
    • 2012
  • In order to simultaneously enhance the strength and plasticity in nanostructured / ultrafine-grained alloys, a strategy of introducing multiple length scales into microstructure (or called bimodal composite microstructure) has been developed recently. This paper presents a brief overview of the alloy developement and the mechanical behavior of ultrafine-grained Ti-Fe-based alloys with different length-scale phases, i.e., micrometer-sized primary phases (dendrites or eutectic) embedded in an ultrafine-grained eutectic matrix. These ultrafine-grained titanium bimodal composites could be directly obtained through a simple single-step solidification process. The as-prepared composites exhibit superior mechanical properties, including high strength of 2000-2700 MPa, large plasticity up to 15-20% and high specific strength. Plastic deformation of the ultrafine-grained titanium bimodal composites occurs through a combination of dislocation-based slip in the nano-/ultrafine scale matrix and constraint multiple shear banding around the micrometer-sized primary phase. The microstructural charactersitcs associated to the mechanical behaivor have been detailed discussed.