Browse > Article
http://dx.doi.org/10.12989/amr.2012.1.1.013

High performance ultrafine-grained Ti-Fe-based alloys with multiple length-scale phases  

Zhang, Lai-Chang (School of Mechanical and Chemical Engineering, The University of Western Australia)
Publication Information
Advances in materials Research / v.1, no.1, 2012 , pp. 13-29 More about this Journal
Abstract
In order to simultaneously enhance the strength and plasticity in nanostructured / ultrafine-grained alloys, a strategy of introducing multiple length scales into microstructure (or called bimodal composite microstructure) has been developed recently. This paper presents a brief overview of the alloy developement and the mechanical behavior of ultrafine-grained Ti-Fe-based alloys with different length-scale phases, i.e., micrometer-sized primary phases (dendrites or eutectic) embedded in an ultrafine-grained eutectic matrix. These ultrafine-grained titanium bimodal composites could be directly obtained through a simple single-step solidification process. The as-prepared composites exhibit superior mechanical properties, including high strength of 2000-2700 MPa, large plasticity up to 15-20% and high specific strength. Plastic deformation of the ultrafine-grained titanium bimodal composites occurs through a combination of dislocation-based slip in the nano-/ultrafine scale matrix and constraint multiple shear banding around the micrometer-sized primary phase. The microstructural charactersitcs associated to the mechanical behaivor have been detailed discussed.
Keywords
titanium alloy; bimodal composite; multiple length scales; ultrafine-grained; mechanical behavior; microstructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang, L.C., Xu, J. and Eckert, J. (2006a), "Thermal stability and crystallization kinetics of mechanically alloyed TiC/Ti-based metallic glass matrix composite", J. Appl. Phys., 100(3), 033514.   DOI   ScienceOn
2 Zhang, L.C., Xu, J. and Ma, E. (2006b), "Consolidation and properties of ball-milled Ti50Cu18Ni22Al4Sn6 glassy alloy by equal channel angular extrusion", Mat. Sci. Eng. A, 434(1-2), 280-288.   DOI   ScienceOn
3 Zhang, L.C., Das, J., Lu, H.B., Duhamel, C., Calin, M. and Eckert, J. (2007a), "High strength Ti-Fe-Sn ultrafine composites with large plasticity", Scripta Mater., 57(2), 101-104.   DOI   ScienceOn
4 Zhang, L.C., Lu, H.B., Mickel, C. and Eckert, J. (2007b), "Ductile ultrafine-grained Ti-based alloys with high yield strength", Appl. Phys. Lett., 91(5), 051906.   DOI   ScienceOn
5 Zhang, L.C., Lu, H.B., Calin, M. Pereloma, E.V. and Eckert, J. (2010), "High-strength ultrafine-grained Ti-Fe-Sn alloys with a bimodal structure", J. Phys. Conf. Ser., 240(1), 012103.
6 Zhang, L.C., Calin, M. and Eckert, J. (2011), "High-strength titanium base alloys with multiple length-scale microstructure", Chapter 8 in: David E. Malach (Ed.), Advances in Mechanical Engineering Research, Volume 2, Nova Science Publishers, ISBN 978-1-61761-984-7, Hauppauge, NY, USA.
7 Zhang, T. and Inoue, A. (2001), "Ti-based amorphous alloys with a large supercooled liquid region", Mater. Sci. Eng. A-Struct., 304(1-2), 771-774.
8 Zheng, N., Wang, G., Zhang, L.C., Calin, M., Stoica, M., Vaughan, G., Mattern, N. and Eckert, J. (2010), "In situ high-energy x-ray diffraction observation of structural evolution in a Ti-based bulk metallic glass upon heating", J. Mater. Res., 25(12), 2271-2277.   DOI   ScienceOn
9 Ma, C.L., Ishihara, S., Soejima, H. Nishiyama, N. and Inoue, A. (2004), "Formation of new Ti-based metallic glassy alloys", Mater. Trans., 45(5), 1802-1806.   DOI   ScienceOn
10 Ma, E. (2003a), "Nanocrystalline materials: Controlling plastic instability", Nature Mater., 2(1), 7-8.   DOI
11 Ma, E. (2003b), "Instabilities and ductility of nanocrystalline and ultrafine-grained metals", Scripta Mater., 49(7), 663-668.   DOI   ScienceOn
12 Ma, E. (2006), "Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys", JOM, 58(4), 49-53.   DOI   ScienceOn
13 Misra, D.K., Sohn, S.W., Gabrisch, H. Kim, W.T. and Kim, D.H. (2010a), "High strength Ti-Fe-(In, Nb) composites with improved plasticity", Intermetallics, 18(3), 342-347.   DOI   ScienceOn
14 Misra, D.K., Sohn, S.W., Kim, W.T. and Kim. D.H. (2010b), "High strength hypereutectic Ti-Fe-Ga composites with improved plasticity", Intermetallics, 18(2), 254-258.   DOI   ScienceOn
15 Oak, J.J., Louzguine-Luzgin, D.V. and Inoue, A. (2007), "Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior", J. Mater. Res., 22(5), 1346-1353.   DOI
16 Ohkuboa, T., Nagahamaa, D., Mukaia, T. and Hono, K. (2007), "Stress-strain behaviors of Ti-based bulk metallic glass and their nanostructures", J. Mater. Res., 22(5), 1406-1413.   DOI   ScienceOn
17 Park, J.M., Han, J.H., Kim, K.B. Mattern, N., Eckert, J. and Kim, D.H. (2009), "Favorable microstructural modulation and enhancement of mechanical properties of Ti-Fe-Nb ultrafine composites", Philos. Mag. Lett., 89(10), 623-632.   DOI   ScienceOn
18 Song, G.A., Han, J.H., Kim, T.E. Park, J.M., Kim, D.H., Yi, S., Seo, Y., Lee, N.S. and Kim, K.B. (2011), "Heterogeneous eutectic structure in Ti-Fe-Sn alloys", Intermetallics, 19(4), 536-540.   DOI   ScienceOn
19 Sun, B.B., Sui, M.L., Wang, Y.M., He, G., Eckert, J. and Ma, E. (2006), "Ultrafine composite microstructure in a bulk Ti alloy for high strength, strain hardening and tensile ductility", Acta Mater., 54(5), 1349-1357.   DOI   ScienceOn
20 Wang, Y.L., Ma, E. and Xu, J. (2008), "Bulk metallic glass formation near the TiCu-TiNi pseudo-binary eutectic composition", Philos. Mag. Lett., 88(5), 319-325.   DOI   ScienceOn
21 Wang, Y.M., Chen, M.W., Zhou, F.H. and Ma, E. (2002), "High tensile ductility in a nanostructured metal", Nature, 419(6910), 912-915.   DOI   ScienceOn
22 Zhang, L.C. and Xu, J. (2002), "Formation of glassy $Ti_{50}Cu_{20}Ni_{24}Si_4B_2$ alloy by high-energy ball milling", Mater. Sci. Forum, 386-388, 47-52.   DOI
23 Zhang, L.C., Xu, J. and Ma, E. (2002), "Mechanically alloyed amorphous Ti50(Cu0.45Ni0.55)(44-x)AlxSi4B2 alloys with supercooled liquid region", J. Mater. Res., 17(7), 1743-1749.   DOI
24 Zhang, L.C., Shen, Z.Q. and Xu, J. (2005), "Thermal stability of mechanically alloyed boride/Ti50Cu18Ni22Al4Sn6 glassy alloy composites", J. Non-Cryst. Solids, 351(27-29), 2277-2286.   DOI   ScienceOn
25 Das, J., Theissmann, R., Loser, W. and Eckert, J. (2010), "Effect of Sn on microstructure and mechanical properties of Ti-Fe-(Sn) ultrafine eutectic composites", J. Mater. Res., 25(5), 943-956.   DOI
26 Guo, F.Q., Wang, H.J., Poon, S.J. and Shiflet, G.J. (2005), "Ductile titanium-based glassy alloy ingots", Appl. Phys. Lett., 86(9), 091907.   DOI   ScienceOn
27 Han, J.H., Kim, K.B., Yi, S., Park, J.M., Sohn, S.W., Kim, T.E., Kim, D.H., Das, J. and Eckert, J. (2008), "Formation of a bimodal eutectic structure in Ti-Fe-Sn alloys with enhanced plasticity", Appl. Phys. Lett., 93(14), 141901.   DOI   ScienceOn
28 He, G., Eckert, J., Loser, W. and Schultz, L. (2003), "Novel Ti-base nanostructure-dendrite composite with enhanced plasticity", Nature Mater., 2(1), 33-37.   DOI   ScienceOn
29 Hofmann, D.C., Suh, J.Y., Wiest, A., Lind, M.L., Demetriou, M.D. and Johnson, W.L. (2008), "Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility", P. Natl. Acad. Sci. USA, 105(51), 20136-20140.   DOI   ScienceOn
30 Huang, Y.J., Shen, J., Sun, J.F. and Yu, X.B. (2007), "A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability", J. Alloy. Compd., 427(1-2), 171-175.   DOI
31 Inoue, A. (2000), "Stabilization of metallic supercooled liquid and bulk amorphous alloys", Acta Mater., 48(1), 279-306.   DOI   ScienceOn
32 Johnson, W.L. (1999), "Bulk glass-forming metallic alloys: Science and technology", MRS Bull., 24(10), 42-56.   DOI
33 Koch, C.C. (2003), "Ductility in nanostructured and ultra fine-grained materials: recent evidence for Optimism", J. Metast. Nano. Mater., 18, 9-20.   DOI
34 Lazar, P., Podloucky, R. and Wolf, W. (2005), "Correlating elasticity and cleavage", Appl. Phys. Lett., 87(26), 261910.   DOI   ScienceOn
35 Louzguina-Luzgina, L.V., Louzguine-Luzgin, D.V. and Inoue, A. (2006), "Influences of additional alloying elements (V, Ni, Cu, Sn, B) on structure and mechanical properties of high-strength hypereutectic Ti-Fe-Co bulk alloys", Intermetallics, 14(3), 255-259.   DOI   ScienceOn
36 Louzguina-Luzgina, L.V., Louzguine-Luzgin, D.V. and Inoue, A. (2009), "Effect of B addition to hypereutectic Ti-based alloys", J. Alloy. Compd., 474(1-2), 131-133.   DOI
37 Louzguina, L.V., Louzguine-Luzgin, D.V. and Inoue, A. (2005), "Ultra-strong and ductile hypereutectic Ti-based bulk alloys", J. Metastable Nanocryst. Mater, 24-25, 265-268.   DOI
38 Louzguine-Luzgin, D.V., Louzguina-Luzgina, L.V., Kato, H. and Inoue, A. (2005), "Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility", Acta Mater., 53(7), 2009-2017.   DOI   ScienceOn
39 Louzguine-Luzgin, D.V., Louzguina-Luzgina, L.V. and Inoue, A. (2007), "Deformation behavior of high strength metastable hypereutectic Ti-Fe-Co alloys", Intermetallics, 15(2), 181-186.   DOI   ScienceOn
40 Louzguine, D.V., Kato, H., Louzguina, L.V. and Inoue, A. (2004), "High-strength binary Ti-Fe bulk alloys with enhanced ductility", J. Mater. Res., 19(12), 3600-3606.   DOI   ScienceOn
41 Calin, M., Zhang, L.C. and Eckert, J. (2007), "Tailoring of microstructure and mechanical properties of a Ti-based bulk metallic glass-forming alloy", Scripta Mater., 57(12), 1101-1104.   DOI   ScienceOn
42 Das, J., Kim, K.B., Baier, F., Loser, W. and Eckert, J. (2005), "High-strength Ti-base ultrafine eutectic with enhanced ductility", Appl. Phys. Lett., 87(16), 161907.   DOI   ScienceOn