절곡각 및 묻힘길이에 따른 V형 띠철근의 부착특성

Effect of Bending Angle and Embedment Length on the Bond Characteristics of V-shaped Tie Reinforcement

김 원 우^{1*} 양 근 혁²

Kim, Won-Woo^{1*} Yang, Keun-Hyeok²

Department of Architectural Engineering, Kyeonggi University, Suwon, Gyonggi-do, 443-760, Korea¹ Department of Plant-Architectural Engineering, Kyeonggi University, Suwon, Gyonggi-do, 443-760, Korea²

Abstract

This study proposed V-shaped tie bar method as an alternative of internal cross-tie for reinforced concrete columns in order to enhance the constructability and confinement effectiveness of the lateral tie bars. A total of 35 pull-out specimens were prepared with the parameters of concrete compressive strength and bending angle and embedment length of the V-shaped bar to examine the bond stress-slip relationship of the V-shaped tie bar. The bond strength of the V-shaped tie bars with the bending angle not exceeding 60° was higher than the predictions obtained from the equations of CEB-FIP provision. Considering the constructability and bond behavior of the V-shaped tie bar, the bending angle and embedment length of such bar can be optimally recommended as 45° and 6db, respectively, where db is the diameter of the tie bar.

Keywords : v-shaped tie bar, bond stress, slip, embedment length, bending angle

1.서 론

일반적으로 철근콘크리트 기둥의 연성은 횡보강근에 의 해 제공되는 구속력에 의해 중요한 영향을 받는다. KCI 2012[1] 및 ACI 318-11[2]에서 제시하고 있는 철근콘크 리트의 기둥에 대한 내진설계는 횡보강근으로서 외부 띠철 근과 함께 콘크리트 코어를 관통하는 내부 크로스타이의 배 근양과 간격을 규정하고 있다. 코어내부의 크로스타이는 횡 보강근의 수직간격과 동일하게 배근되는데 시공성을 고려 하여 한쪽단이 90° 후크로, 타단이 135° 후크로 배근되도 록 규정되고 있다. 하지만 한쪽 단이 90° 후크인 크로스타

Accepted : July 13, 2015

이를 이용한 코어콘크리트의 구속은 기둥의 대 변형에서 풀 림현상이 발생하여 내진설계에서 중요한 기둥의 연성을 저 하시키는 원인으로 지적되고 있다[3]. 이에 따라 콘크리트 표준시방서 2009[4]에서는 내부크로스타이 후크에 대해 양 쪽 단 전부를 135°로 배근할 것을 권장하고 있다. 하지만 작업의 난이도 및 시공 배근상의 문제로 인해 대부분 실무 에서 적용되고 있는 경우가 매우 드물다.

기둥의 대 변형에서 내부 크로스타이 후크의 풀림현상을 방지하기 위해서 헤드형 크로스타이, 마름모 및 팔각형 형 태의 배근 방법이 연구되고 있다. 하지만 헤드형 크로스타 이의 배근방법은 후크의 풀림현상방지에는 효과적인데 비 해 헤드 정착판의 크기와 두께 때문에 과밀배근의 해소에 도움이 되지 않거나 제작상의 어려움으로 경제성이 떨어진 다[5]. 마름모 및 팔각형 형태와 같은 복잡한 형태의 배근방 법은 동일 배근간격에서 체적비가 증가해 풀림현상방지에 는 도움이 되지만, 이에 따라 단면이 복잡하게 되고 현장시 공이 매우 어렵다[6].

Received : April 22, 2015

Revision received : May 27, 2015

^{*} Corresponding author : Kim, Won-Woo

[[]Tel: 031-249-9703, E-mail: kowasdf@naver.com]

^{©2015} The Korea Institute of Building Construction, All rights reserved.

본 연구의 목적은 철근콘크리트 기둥에서 기존 크로스타 이를 대체할 수 있는 V형 보조 띠철근의 배근을 제시하기 위한 기초기술의 확립이다. V형 보조 띠철근이 배근된 기둥 의 중심압축 및 휨·압축 거동을 평가하기에 앞서 콘크리트 구속 및 주철근 좌굴제어에 대한 V형 보조 띠철근의 최적 절곡각도 및 묻힘길이를 평가할 필요가 있다. 이를 위해 콘 크리트의 압축강도, V형 철근의 절곡각도 및 묻힘길이를 주 요 변수로 직접 인발실험에 의한 V형 철근의 부착거동을 평가하였다. V형 띠철근의 부착응력은 CEB-FIP 설계기준 [7]과의 비교를 통하여 그 안전성을 평가하였다. 실험결과 에 기반하여 V형 띠철근의 최적 절곡각도 및 묻힘길이를 제시하였다.

2. V형 띠철근 배근 상세

기둥의 내부 크로스타이를 대체하기 위한 V형 띠철근 배 근방법은 이형철근을 대칭으로 절곡하여 가공된 형태로 원 터치형 클립을 이용해 주철근에 고정시키는 방법이다 (Figure 1). 이러한 형태의 띠철근은 가공공정이 용이하며 배근 시에도 기둥 내부를 가로지르지 않기 때문에 시공성이 현저히 증가한다. 또한 접합부의 철근 과밀도 방지 할 수 있다. 특히 기둥의 대 변형에서도 내부 크로스타이처럼 훅 크의 풀림현상을 방지할 수 있어 주철근의 좌굴 및 콘크리 트 코어의 구속력 제공에 매우 효율적일 수 있다. 하지만 V형 띠철근의 구속력은 절곡각도 및 묻힘길이에 의해 중요 한 영향을 받기 때문에 이에 대한 기초연구가 필요하다.

Figure 1. Detail of V-shaped tie bars

3. 실험계획 및 방법

3.1 실험체 계획

콘크리트의 압축강도는 보통강도와 고강도 콘크리트의

범주인 27MPa와 60MPa로 각각 계획하였다. V형 띠철근 의 절곡각(θ)은 0°, 30°, 45°, 60° 및 90°로 정하였으며, 문힘길이(l_{ab})는 50mm, 60mm, 70mm 및 80mm로 정하 였다. 주요 변수에 대한 실험체 상세는 Table 1에 요약하였 다. V형 띠철근의 직접인발 실험체 상세는 Figure 2에 나 타내었다. V형 띠철근의 문힘길이는 PVC관을 콘크리트 속 에 삽입하여 조절하였다. V형 철근에 사용된 이형철근은 항 복강도 400MPa의 D10을 사용하였다. 직접인발 실험을 위 해 V형 띠철근에 D16 철근을 용접하여 제작하였다. D16 철근의 항복강도는 600MPa으로서, V형 띠철근의 부착파 괴에 앞서 항복하지 않도록 계획하였다. V형 띠철근이 묻힌 콘크리트 시험체는 그 깊이가 150mm 이며, 폭은 V형 띠철 근의 절곡각도에 따라 변하였다.

Figure 2. Detail of pullout specimen

3.2 측정방법

부착강도 인발실험은 KS F 2441에 준하여 수행하였다 (Figure 3). 가력은 500kN 용량의 만능재료 실험기를 사 용하여 0.2mm/min의 변위속도로 제어하였다. 미끄러짐 (Slip)은 자유단과 하중단에서 다이얼게이지(Dial gauge) 를이용해 측정하였다. 또한 인발실험시 편심오차를 줄이기 위해 실험체의 수평을 유지 할 수 있도록 하중단 방향에 구 좌를 설치하였다.

Figure 3. Detail of test setting

3.3 부착응력 산정

인발실험에서 실제로 철근이 받는 인장력은 콘크리트에 문혀있는 철근에 균등하게 분포되지 않지만, 일반적으로 부 착응력은 일정하게 분배된다고 가정한다[8]. 또한, V형 띠 철근의 인발실험에서는 철근이 받는 인장력에 대해 두 개의 철근으로 저항한다. 따라서 V형 띠철근의 부착응력 (τ_b)은 두 개의 철근에 인장력이 균등하게 분배된다고 가정하였으 며, 철근의 절곡각(θ)에 따라서 다음 식으로 계산된다.

$$\tau_b = \frac{0.5P\cos\left(\frac{\theta}{2}\right)}{\pi d_b l_{db}} \quad ----- \quad (1)$$

여기서, *P*는 작용 하중을, *d_b*와 *l_{ab}*는 V형 띠철근의 공칭 지름과 묻힘길이를 각각 의미한다.

4. 실험결과 및 분석

4.1 부착응력-미끄러짐 관계

자유단에서 측정한 V형 띠철근 실험체의 절곡각도에 의

한 부착응력-미끄러짐 관계를 Figure 4에 나타내었다. 각 시험체의 최대부착응력 및 최대 부착응력시 미끄러짐 양은 Table 1에 요약하였다. 실험결과 V형 띠철근이 항복하기 전에 모두 부착파괴가 일어났다. 일반적인 부착응력-미끄 러짐관계는 부착응력이 일정하게 증가하여 최대 부착응력 에 도달한 이후 부착응력이 급격하게 감소한다[8]. V형 띠 철근 실험체의 인발실험 결과도 일반적인 부착응력-미끄러 집 관계와 비슷한 경향을 보였다. 최대 부착응력시 미끄러 짐 양은 콘크리트의 압축강도 27MPa에서 0.43mm. 콘크 리트의 압축강도 60MPa에서 0.18mm로 약 42%로 감소하 였다. 콘크리트의 압축강도가 증가함에 따라 최대 부착응력 시 미끄러짐 양은 감소하였으며 최대 부착응력 이후 하강 기울기 또한 상대적으로 급격히 감소하였다. 최대 부착하중 은 V형 띠철근의 묻힘길이의 증가에 따라 증가하였다. 하지 만. 부착응력은 식(1)에 따라 환산하여 계산한 결과 묻힘길 이의 증가는 부착응력에 영향성이 미미하였으며 오히려 부 착응력이 감소하는 경우도 있다. 이는 크기효과와 마찬가지 로 최대 부착하중의 증가율보다 V형 철근의 부착면적 증가 율이 더 크기 때문으로 판단된다. V형 띠철근의 절곡각은 콘크리트의 압축강도 60MPa에서보다 27MPa에서 영향성 이 더 크다. 최대 부착응력은 콘크리트의 압축강도에 상관 없이 V형 띠철근의 절곡각이 30°인 실험체이며. 각도가 증 가함에 따라 감소하는 경향성을 보였다. 그 감소율은 콘크 리트의 압축강도 27MPa 및 60MPa에 따라 각각 21% 및 11%로 고강도 콘크리트에서보다 보통강도 콘크리트에서 더 크다. 또한, 콘크리트의 압축강도에 상관없이 V형 띠철 근의 절곡각이 90°인 실험체의 최대 부착응력은 절곡각이 30°인 실험체 대비 약 71% 수준으로 가장 작다. 이는 콘크 리트 피복두께 부족에 의한 부착 할렬파괴의 영향으로 부착 응력이 저하된 것으로 판단된다.

4.2 최대 부착응력

V형 띠철근의 콘크리트 압축강도별 최대 부착응력은 Figure 5에 나타내었다. V형 띠철근의 절곡각은 최대 하중 이 같다고 가정하면 콘크리트의 압축강도에 상관없이 식 (1)에 의해 절곡각이 0°인 실험체에서 가장 높은 최대응력 으로 계산될 것이다. 하지만 절곡각이 0°인 V형 띠철근의 실험체의 부착저항에 대한 콘크리트 피복이 충분히 확보되 지 않아 응력의 간섭으로 인해 최대응력은 V형 띠철근 절곡 각이 30°인 실험체에서 가장 높았다. 또한 최대 부착응력

은 콘크리트 강도가 27MPa에서 60MPa로 증가함에 따라 평균 146%로 증가하였다. 분석결과 부착응력은 콘크리트 의 압축강도 및 절곡각에 의한 영향성이 컸다.

4.3 설계기준과의 비교

부착특성에 대한 평가를 위해서 V형 띠철근의 절곡각도 별 부착강도 비를 나타내었다. 부착강도 비는 V형 띠철근 에 대한 콘크리트의 부착강도를 √f_d 로 무차원한 값이다. 이에 대한 평가대상으로는 CEB-FIP 설계 기준을 대상으 로 하였다. 비교를 위한 실험값은 Table 1에 나타내었다. 부착할렬 파괴된 V형 띠철근의 절곡각이 90°인 실험체를 제외한 나머지 실험체의 부착강도 비의 평균은 콘크리트의 압축강도 27MPa인 경우 2.16 이며, 60MPa의 경우 2.07 이다. 이는 CEB-FIP 설계기준에서 제시하는 2.0보다 높 았다. 비교한 결과는 Figure 5에 나타내었으며, 대부분의 실험체는 안전측에 있다. 따라서 V형 띠철근 배근의 최적각 도는 부착하중이 최대인 30°로 판단된다. 또한, 부착특성에 대해서 V형 띠철근의 절곡각이 90°인 실험체를 제외하면 문힘길이에 대한 그 영향성이 작았다. 따라서 횡보강근의 ACI 318-11 설계기준인 64,이상인 경우 CEB-FIP 설계 기준을 만족하기 때문에 V형 띠철근 배근시에도 묻힘길이 는 ACI 318-11 설계기준을 따르면 될 것으로 판단된다. 여기서 4,는 띠철근 직경이다. 8번과 35번 실험체는 실험제 작 오차로 인해 실험값을 측정하지 못하였다.

No.	$egin{array}{c} f_{ck} \ ({\sf MPa}) \end{array}$	$_{(deg)}^{ heta}$	l_{db} (mm)	Experimental value			
				$\overset{\sigma_{\max}}{(MPa)}$	$P_{\max} \atop (kN)$	$S_{ m max}$ (mm)	$\sigma_{\rm max}/\sqrt{f_{ck}}$
1	27	0	50	10.62	33.37	0.42	2.08
2			60	10.64	40.11	0.46	2.09
3			70	10.63	41.02	0.33	2.08
4			80	10.28	51.69	0.50	2.02
5	27	30	50	12.83	41.72	0.73	2.51
6			60	11.60	47.52	0.65	2.39
7			70	13.76	62.63	0.52	2.70
8			80	-	_	-	-
9	27	45	50	10.53	35.79	0.49	2.06
10			60	10.68	39.62	0.27	2.09
11			70	10.78	44.64	0.35	2.11
12			80	10.29	56.01	0.39	2.02
13	27	60	50	10.50	38.08	0.22	2.06
14			60	10.85	47.24	0.40	2.13
15			70	10.99	55.79	0.30	2.15
16			80	9.82	57.01	0.40	1.92
17	27	90	50	5.77	25.64	0.30	1.13
18			60	6.30	33.58	0.40	1.23
19			70	6.66	41.40	0.62	1.30
20			80	5.93	42.13	0.34	1.16
21	60	0	50	16.61	41.22	0.49	2.17
22			60	15.57	58.69	0.21	2.03
23			70	15.51	68.24	0.11	2.03
24	60	30	50	16.38	55.69	0.18	2.14
25			60	15.89	64.85	0.20	2.08
26			70	15.46	73.59	0.11	2.02
27	60	45	50	15.70	51.07	0.19	2.05
28			60	15.60	60.90	0.13	2.04
29			70	15.58	70.92	0.12	2.03
30	60	60	50	15.51	56.27	0.18	2.03
31			60	15.87	69.10	0.31	2.07
32			70	16.17	82.13	0.12	2.11
33	60	90	50	10.36	46.02	0.07	1.35
34			60	10.78	57.48	0.07	1.41
35			70	-	_	-	-

Table 1. Specimen properties and parameter

Figure 5. Bond stress of V-shaped reinforcement

5. 결 론

기둥 내부 크로스타이의 대체를 위한 V형 보조 띠철근의 최적 절곡각도 및 묻힘길이를 평가하기 위한 직접인발실험 을 수행하였다. 최대 부착응력 및 설계기준과의 비교를 통 하여 최적의 V형 철근의 상세를 제시하였다. 본 연구에서 제시된 최적 절곡각도 및 묻힘길이를 적용한 V형 보조 띠철근이 배근된 철근콘크리트 기둥의 중심압축 및 휨·압축 거동에 대한 실험연구가 계획되었다. 철근콘크리트 기둥의 V형 보조띠철근 배근기술의 기초연구로서 수행한 부착거동 의 실험결과 다음과 같은 결론을 얻었다.

- 최대 부착응력은 묻힘길이가 60mm에서 70mm로 증 가할 때 보통강도와 고강도 콘크리트에서 각각 104%, 106%로 향상되었다.
- 2) V형 띠철근의 최대 부착응력은 절곡각 30°에서 가장 높았으며 절곡각 45°일 때 부착응력은 절곡각 30°에 비해 약 10% 감소하였다.
- 3) 대부분의 V형 띠철근 실험체에서는 CEB-FIP 설계 기준을 만족하지만, 절곡각 90°를 갖는 실험체는 콘 크리트의부착할렬 파괴로 인해 기준에서 제시한 값보 다 작아 불안전측에 있다.
- 4) 부착할렬 파괴로 인해 부착응력이 저하되는 절곡각
 90°를 갖는 실험체를 제외하면 묻힘길이의 증가에 의 한 부착응력상승은 미미하다.
- 5) V형 띠철근의 시공 효율성 및 부착응력을 고려할 때 절곡각은 45°, 묻힘길이는 6d,가 추천될 수 있었는데, 여기서 d,는 띠철근 직경이다.

요 약

철근콘크리트 기둥에서 횡 보강근의 시공성 및 구속효과 를 향상시키기 위하여 본 연구에서는 내부 크로스타이의 대 체로서 V형 띠철근의 배근방법을 제시하였다. 제시된 V형 띠철근의 부착응력-미끄러짐 관계를 파악하기 위하여 콘크 리트 강도 및 V형 띠철근의 절곡각도와 묻힘길이를 주요변 수로 35개의 직접인발 실험체를 제작하였다. V형 띠철근의 부착강도는 절곡각도가 60° 이하에서 CEB-FIP 기준 식보 다 높게 있었다. V형 띠철근의 시공성 및 부착거동을 고려 하면, V형 띠철근의 최적 절곡각도 및 묻힘길이는 각

각 45°와 64, 이상으로 제시될 수 있었는데, 여기서 4,는 띠철근 직경이다.

키워드 : V형 띠철근, 부착응력, 미끄러짐, 묻힘길이, 절곡각

Acknowledgement

This work was supported by Kyonggi University's Graduate Research Assistantship 2014.

References

- Korea Concrete Institute. Concrete Design Code and Commentary. Kimoondang Publishing Company. 2012.
- American Concrete Institute. Building Code Requirements for Structural Concrete and Commentary. ACI 318–11. 2011.
- Lee YH. An Experimental Study on the Strength and Ductility of High–Strength Concrete Columns Confined by Lateral Ties Under Axial Loads [dissertation]. Seoul: Chung–Ang University; 2001. 143 p.
- Korea Concrete Institute. Standard Specification for Concrete. Kimoondang Publishing Company. 2009.
- Chun SC, Kim DY. Design Considerations and Pull-Out Behavior of Mechanical Anchor of Reinforcement, Journal of the Korea Concrete Institute, 2001 Dec;13(6):593-601.
- Han BS, Kim JK, Shin SW. Evaluation of Confinement Effect of High Strength Concrete Confined with Transverse Ties in Reinforced Concrete Columns. Journal of Architectural Institute of Korea. 2008 Mar;24(3):3–10.
- Comite Euro-International Du Beton. Ceb-fip Model Code 1990. Thomas Telforld. 1991. 437 p.
- Kim BJ, Jin IG, Choi HB, Kang KI. The Effect of Form Oils on Bond Characteristics of Reinforced Concrete Members. Journal of Architectural Institute of Korea. 2007 Dec;23(12):89–96.