Browse > Article
http://dx.doi.org/10.12989/sem.2022.84.5.575

Bond behavior between circular steel tube and high-strength concrete after elevated temperatures  

Ji, Zhou (College of Civil Engineering and Architecture, Guangxi University)
Zongping, Chen (College of Civil Engineering and Architecture, Guangxi University)
Maogen, Ban (College of Civil Engineering and Architecture, Guangxi University)
Yunsheng, Pang (College of Civil Engineering and Architecture, Guangxi University)
Publication Information
Structural Engineering and Mechanics / v.84, no.5, 2022 , pp. 575-590 More about this Journal
Abstract
In this paper, bond-slip behavior of high strength concrete filled circular steel tube (HSCFCST) after elevated temperatures treatment was studied. 17 specimens were designed for push-out test. The influence was discussed as following parameters: (a) concrete strength, (b) constant temperature, and (c) bond length. The results showed that (1) after elevated temperatures treatment, the bond strength of the HSCFCST specimens increased first and then decreased with temperature rising; (2) the bond strength increased with the increase of concrete strength at room temperature, while the influence subsided after elevated temperatures treatment; (3) the strain of the circular steel tube was distributed exponentially along its length, the stress changed from exponential distribution to uniform distribution with the increase of load; (4) the bond damage process was postponed with the increase of constant temperature; and (5) the energy consumption capacity of the bonding interface increased with the rise of concrete strength and constant temperature. Moreover, computational formulas of ultimate and residual bond strength were obtained by regression, and the bond-slip constitutive models of HSCFCSTs after elevated temperatures was established.
Keywords
bond behavior; constitutive models; elevated temperatures test; high-strength concrete; steel tube;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Al-Furjan, M.S.H., Shan, L., Shen, X., Kolahchi, R. and Rajak, D.K. (2022a), "Combination of FEM-DQM for nonlinear mechanics of porous GPL-reinforced sandwich nanoplates based on various theories", Thin Wall. Struct., 178, 109495. https://doi.org/10.1016/j.tws.2022.109495.   DOI
2 Al-Furjan, M.S.H., Yin, C., Shen, X., Kolahchi, R., Zarei, M.S. and Hajmohammad, M.H. (2022b), "Energy absorption and vibration of smart auxetic FG porous curved conical panels resting on the frictional viscoelastic torsional substrate", Mech. Syst. Signal Pr., 178, 109269. https://doi.org/10.1016/j.ymssp.2022.109269.   DOI
3 Aly, T., Elchalakani, M., Thayalan, P. and Patnaikuni, I. (2010), "Incremental collapse threshold for pushout resistance of circular concrete filled steel tubular columns", J. Constr. Steel Res., 66(1), 11-18. https://doi.org/10.1016/j.jcsr.2009.08.002.   DOI
4 Alyaa, A.A.A., Mazin, B.A., Hussein, M.H. and Bassam, A.T. (2020), "Investigating the behaviour of hybrid fibre-reinforced reactive powder concrete beams after exposure to elevated temperatures", J. Mater. Res. Technol., 9(2). https://doi.org/10.1016/j.jmrt.2019.12.029.   DOI
5 Amin, M. and Tayeh, B.A. (2020), "Investigating the mechanical and microstructure properties of fibre-reinforced lightweight concrete under elevated temperatures", Case Stud. Constr. Mater., 13, e00459. https://doi.org/10.1016/j.cscm.2020.e00459.   DOI
6 Amin, M., Hakeem, I.Y., Zeyad, A.M., Tayeh, B.A., Maglad, A.M. and Agwa, I.S. (2022), "Influence of recycled aggregates and carbon nanofibres on properties of ultra-high-performance concrete under elevated temperature", Case Stud. Constr. Mater., 16, e01063. https://doi.org/10.1016/j.cscm.2022.e01063.   DOI
7 Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete", Struct. Eng. Mech., 80(2), 181-199. https://doi.org/10.12989/sem.2021.80.2.181.   DOI
8 Bahrami, A. and Nematzadeh, M. (2021), "Bond behavior of lightweight concrete-filled steel tubes containing rock wool waste after exposure to high temperatures", Constr. Build. Mater., 300, 124039. https://doi.org/10.1016/j.conbuildmat.2021.124039.   DOI
9 BS 540025 (2005), Steel Concrete and Composite Bridges: Part 5: Code of Practice for the Design of Composite Bridges, British Standard Institute, London, British.
10 CEN, EN 1992-1-2 Eurocode 2 (2005), Part 1-2: Design of Concrete Structures-General Rules-Structural Fire Design, Belgique, Bruxelles.
11 Chen, Z., Jia, H. and Li, S. (2022), "Bond behavior of recycled aggregate concrete-filled steel tube after elevated temperatures", Constr. Build. Mater., 325, 126683. https://doi.org/10.1016/j.conbuildmat.2022.126683.   DOI
12 Chen, Z., Zhou, J. and Wang, X. (2020a), "Study on bond behavior of steel reinforced high strength concrete after high temperatures", Adv. Concrete Constr., 10(2), 113-125. https://doi.org/10.12989/acc.2020.10.2.113.   DOI
13 Chen, Z., Zhou, J., Jing, C. and Tan, Q. (2021), "Mechanical behavior of spiral stirrup reinforced concrete filled square steel tubular columns under compression", Eng. Struct., 226, 111377. https://doi.org/10.1016/j.engstruct.2020.111377.   DOI
14 Chen, Z., Zhou, J., Liang, Y. and Ye, P. (2020b), "Residual behavior of recycled aggregate concrete beam and column after elevated temperatures", Struct. Eng. Mech., 76(4), 513-528. https://doi.org/10.12989/sem.2020.76.4.513.   DOI
15 Chen, Z.P., Liu, X. and Zhou, W.X. (2018), "Residual bond behavior of high strength concrete-filled square steel tube after elevated temperatures", Steel Compos. Struct., 27(4), 509-523. https://doi.org/10.12989/scs.2018.27.4.509.   DOI
16 DBJ 13-61-2004 (2004), Technical Specification for Steel-Concrete Mixed Structure, Fujian Academy of Building Science, Fujian, China.
17 Dong, H., Chen, X., Cao, W. and Zhao, Y. (2020), "Bond-slip behavior of large high-strength concrete-filled circular steel tubes with different constructions", J. Constr. Steel Res., 167, 105951. https://doi.org/10.1016/j.jcsr.2020.105951.   DOI
18 Ekmekyapar, T. and AL-Eliwi, B.J.M. (2017), "Concrete filled double circular steel tube (CFDCST) stub columns", Eng. Struct., 135, 68-80. https://doi.org/10.1016/j.engstruct.2016.12.061.   DOI
19 Eurocode 4 (2004), Design of Composite Steel and Concrete Structures-Part1-1: General Rules and Rules for Buildings, CEN, Brussels, Belgium.
20 Haido, J.H., Tayeh, B.A., Majeed, S.S. and Karpuzcu, M. (2021), "Effect of high temperature on the mechanical properties of basalt fibre self-compacting concrete as an overlay material", Constr. Build. Mater., 268, 121725. https://doi.org/10.1016/j.conbuildmat.2020.121725.   DOI
21 Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018b), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026.   DOI
22 Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean. Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.   DOI
23 Han, L.H., Tao, Z. and Wang, W.D. (2009), Advanced Composite and Mi ed Structures-Testing, Theory, and Design Approach, Science Press, Beijing, China.
24 Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018a), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002.   DOI
25 Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.   DOI
26 Han, L.H. and Yang, Y.F. (2007), Modern Technology of Concrete-filled Steel Tubular Structure, China Architecture & Building Press, Beijing, China.
27 Karimi, A. and Nematzadeh, M. (2020), "Axial compressive performance of steel tube columns filled with steel fiber-reinforced high strength concrete containing tire aggregate after exposure to high temperatures", Eng. Struct., 219, 1-18. https://doi.org/10.1016/j.engstruct.2020.110608.   DOI
28 Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020a), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech.-A/Solid., 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010.   DOI
29 Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020b), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820.   DOI
30 Kilpatrick, A.E. and Rangan, B.V. (1999), "Influence of interfacial shear transfer on behavior of concrete-filled steel tubular columns", ACI Struct. J., 96(4), 642-648. https://doi.org/10.1016/S0022-1694(99)00076-1.   DOI
31 Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.   DOI
32 Kolahchi, R., Keshtegar, B. and Trung, N.T. (2022), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", J. Sandw. Struct. Mater., 24(1), 643-662. https://doi.org/10.1177/10996362211020388.   DOI
33 Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020), "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656. https://doi.org/10.1016/j.ast.2019.105656.   DOI
34 Lyu, W.Q. and Han, L.H. (2019), "Investigation on bond strength between recycled aggregate concrete (RAC) and steel tube in RAC-filled steel tubes", J. Constr. Steel Res., 155, 438-459. https://doi.org/10.1016/j.jcsr.2018.12.028.   DOI
35 Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42(8), 4073-4081. https://doi.org/10.1002/pc.26118.   DOI
36 Nezamian, A., Al-Mahaidi, R. and Grundy, P. (2006), "Bond strength of concrete plugs embedded in tubular steel piles under cyclic loading", Can. J. Civil Eng., 33(2), 111-125. https://doi.org/10.1139/l05-091.   DOI
37 Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete filled tubes", J. Struct. Eng., 125(5), 477-484. https://doi.org/10.1061/(ASCE)0733-9445(1999) 125:5(477).   DOI
38 Qaidi, S.M., Atrushi, D.S., Mohammed, A.S., Ahmed, H.U., Faraj, R.H., Emad, W. and Najm, H.M. (2022), "Ultra-high-performance geopolymer concrete: A review", Constr. Build. Mater., 346, 128495. https://doi.org/10.1016/j.conbuildmat.2022.128495.   DOI
39 Qiao, Q.Y., Zhang, W.W., Mou, B. and Cao, W.L. (2019), "Seismic behavior of exposed concrete filled steel tube column bases with embedded reinforcing bars: Experimental investigation", Thin Wall. Struct., 136, 367-381. https://doi.org/10.1016/j.tws.2018.12.039.   DOI
40 Qu, X., Chen, Z., Nethercot, D.A., Gardner, L. and Theofanous, M. (2013), "Load-reversed push-out tests on rectangular CFST columns", J. Constr. Steel Res., 81, 35-43. https://doi.org/10.1016/j.jcsr.2012.11.003.   DOI
41 Schaumann, P., Kodur, V. and Bahr, O. (2009), "Fire behavior of hollow structural section steel columns filled with high strength concrete", J. Constr. Steel Constr., 65(8-9), 1794-1802. https://doi.org/ 10.1016/j.jcsr.2009.04.013.   DOI
42 Shakir-Khalil, H. (1993), "Resistance of concrete-filled steel tubes to pushout forces", Struct. Eng., 71(13), 234-243.
43 Song, T.Y., Tao, Z., Han, L.H. and Uy, B. (2017), "Bond behavior of concrete-filled steel tubes at elevated temperatures", J. Struct. Eng., 143(11), 04017147. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001890.   DOI
44 Tao, Z., Han, L.H., Uy, B. and Chen, X. (2011), "Post-fire bond between the steel tube and concrete in concrete-filled steel tubular columns", J. Constr. Steel Res., 67(3), 484-496. https://doi.org/10.1016/j.jcsr.2010.09.006.   DOI
45 Tayeh, B.A., Zeyad, A.M., Agwa, I.S. and Amin, M. (2021), "Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete", Case Stud. Constr. Mater., 15, e00673. https://doi.org/10.1016/j.cscm.2021.e00673.   DOI
46 Tao, Z., Song, T.Y., Brain, U. and Han, L.H. (2016), "Bond behavior in concrete-filled steel tubes", J. Constr. Steel Res., 120, 81-93. https://doi.org/10.1016/j.jcsr.2015.12.030.   DOI
47 Tayeh, B.A., Akeed, M.H., Qaidi, S. and Bakar, B.A. (2022a), "Influence of microsilica and polypropylene fibers on the fresh and mechanical properties of ultra-high performance geopolymer concrete (UHP-GPC)", Case Stud. Constr. Mater., 17, e01367. https://doi.org/10.1016/j.cscm.2022.e01367.   DOI
48 Tayeh, B.A., Hakamy, A., Amin, M., Zeyad, A.M. and Agwa, I.S. (2022b), "Effect of air agent on mechanical properties and microstructure of lightweight geopolymer concrete under high temperature", Case Stud. Constr. Mater., 16, e00951. https://doi.org/10.1016/j.cscm.2022.e00951.   DOI
49 Tobbala, D.E., Rashed, A.S., Tayeh, B.A. and Ahmed, T.I. (2022), "Performance and microstructure analysis of high-strength concrete incorporated with nanoparticles subjected to high temperatures and actual fires", Arch. Civil Mech. Eng., 22(2), 1-15. https://doi.org/10.1007/s43452-022-00397-6.   DOI
50 Virdi, K.S. and Dowling, P.J. (1980), "Bond strength in concrete filled steel tubes", IABSE Proceedings P-33/80, London, British.
51 Xu, J.J., Chen, Z.P., Xue, J.Y. and Su, Y. (2013), "Failure mechanism of interface bond behavior between circular steel tube and recycled aggregate concrete by push-out test", J. Build. Eng., 34(7), 148-156. (In
52 Yuan, G.L. and Guo, C. (2006), "Experimental study on bond property of reinforced concrete at high temperatures", Indus. Constr., 36(2), 57-66. (in Chinese) https://doi.org/10.3321/j.issn:1000-8993.2006.02.017.   DOI
53 Akeed, M.H., Qaidi, S., Faraj, R.H., Majeed, S.S., Mohammed, A.S., Emad, W. and Azevedo, A.R. (2022a), "Ultra-high-performance fiber-reinforced concrete. Part V: Mixture design, preparation, mixing, casting, and curing", Case Stud. Constr. Mat., 17, e01363. https://doi.org/10.1016/j.cscm.2022.e01363.   DOI
54 Zheng, S., Li, L., Deng, G. Zeng, L. and Che, S. (2009), "Experimental study on bond-slip behavior between shaped steel and HSHP concrete in steel reinforced HSHP concrete beams", J. Eng. Mech., 26(1), 104-112. (in Chinese)
55 Abdul-Rahman, M., Al-Attar, A.A., Hamada, H.M. and Tayeh, B. (2020), "Microstructure and structural analysis of polypropylene fibre reinforced reactive powder concrete beams exposed to elevated temperature", J. Build. Eng., 29, 101167. https://doi.org/10.1016/j.jobe.2019.101167.   DOI
56 AIJ (1997), Recommendations for Design and Construction of Concrete Filled Steel Tubular Structure, Architectural Institute of Japan; Tokyo, Japan.
57 Akeed, M.H., Qaidi, S., Faraj, R.H., Mohammed, A.S., Emad, W., Tayeh, B.A. and Azevedo, A.R. (2022b), "Ultra-high-performance fiber-reinforced concrete. Part I: Developments, principles, raw materials", Case Stud. Constr. Mat., 17, e01290. https://doi.org/10.1016/j.cscm.2022.e01290.   DOI
58 Al Saffar, D.M., Tawfik, T.A. and Tayeh, B.A. (2022), "Stability of glassy concrete under elevated temperatures", Eur. J. Environ. Civil Eng., 26(8), 3157-3168. https://doi.org/10.1080/19648189.2020.1783368.   DOI
59 Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021a), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.   DOI
60 Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2021b), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Eur. J. Mech. A-Solid., 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.   DOI