• Title/Summary/Keyword: Slip conditions

Search Result 474, Processing Time 0.024 seconds

Coupled Finite Element Analysis of Partially Saturated Soil Slope Stability (유한요소 연계해석을 이용한 불포화 토사사면 안전성 평가)

  • Kim, Jae-Hong;Lim, Jae-Seong;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.35-45
    • /
    • 2014
  • Limit equilibrium methods of slope stability analysis have been widely adopted mainly due to their simplicity and applicability. However, the conventional methods may not give reliable and convincing results for various geological conditions such as nonhomogeneous and anisotropic soils. Also, they do not take into account soil slope history nor the initial state of stress, for example excavation or fill placement. In contrast to the limit equilibrium analysis, the analysis of deformation and stress distribution by finite element method can deal with the complex loading sequence and the growth of inelastic zone with time. This paper proposes a technique to determine the critical slip surface as well as to calculate the factor of safety for shallow failure on partially saturated soil slope. Based on the effective stress field in finite element analysis, all stresses are estimated at each Gaussian point of elements. The search strategy for a noncircular critical slip surface along weak points is appropriate for rainfall-induced shallow slope failure. The change of unit weight by seepage force has an effect on the horizontal and vertical displacements on the soil slope. The Drucker-Prager failure criterion was adopted for stress-strain relation to calculate coupling hydraulic and mechanical behavior of the partially saturated soil slope.

Evaluation of friction force varied by non-slip surface patterns of deck (데크의 논슬립가공 표면형태 변이에 따른 마찰성능 변화 평가)

  • Han, Yeonjung;Lee, Ju-Hee;Park, Yonggun;Choi, Yun-Ho;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.397-405
    • /
    • 2012
  • Installation of deck has been on the rise in Korea recently, but there is little of research on the safety of deck. One of the major factors affecting maneuverability of a pedestrian is frictional force between an outsole of shoe and a surface of the deck. The frictional force is influenced by many factors such as raw material variance of deck, surface convex shape of deck, outsole patterns of shoes, and moist condition of contact surface between deck and shoes. This study focused on evaluating the effect of these factors on the frictional force. Two kinds of deck, which were made of natural wood and wood plastic composite, were used in this study. The surface convex patterns of deck were classified to single nonslip (longitudinal groove processing) and double nonslip (longitudinal and transverse groove processing). Two kinds of shoe outsole patterns, W-shape and rectangle-shape, were used in the tests. Also, the friction tests were carried out at dried surface conditions and water-adsorbed surface condition.

Fundamental Study on the Effect of Grousers on the Soil Thrust of Off-road Tracked Vehicles (그라우저 효과를 고려한 야지궤도차량의 지반추력 평가연구)

  • Baek, Sung-Ha;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.33-42
    • /
    • 2018
  • When an off-road tracked vehicle travels, an engine thrust that is transmitted to the continuous track induces a shearing action on the soil-track interface. Consequently, the relative displacement known as slip displacement takes place on the soil-track interface, which develops an associated soil thrust acting as a traction force. For the loose or soft ground conditions, an excessively large slip displacement can be required for the development of the desired soil thrust which will make the tracked vehicle mobile and therefore the outer surface of the continuous track is generally designed to protrude with grousers. This paper fundamentally studied the effect of grousers on the soil thrust of off-road tracked vehicles. Based on the soil-track interaction theory, a new soil thrust assessment method that properly takes into account the effect of grousers was developed. Also, the soil thrust of off-road tracked vehicles equipped with a number of grousers was evaluated using the developed assessment method. The results showed that grousers increased the soil thrust of the continuous track, enhancing the overall tractive performance of off-road tracked vehicles. These effects were more obvious as the height of grouser increased and the spacing of grouser decreased; thus, it is concluded that the grouser which has smaller shape ratio (span of the grouser to a grouser height) significantly enhances off-road tracked vehicle's performance.

Characteristics of NOx Reduction and NH3 Slip in SNCR Using Pipe Nozzle for the Application of Hybrid SNCR/SCR Process (Hybrid SNCR/SCR 탈질공정에서 SNCR의 관통노즐에 의한 NOx 저감 및 NH3 Slip 특성)

  • Hyun, Ju Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.111-118
    • /
    • 2009
  • A hybrid SNCR/SCR plant was designed and manufactured, and experimented on the SNCR process in the first step to investigate the optimum operation conditions of SNCR, with the equivalence ratio of the reducing agent(NSR, 0.5~5.0), reaction temperature($850{\sim}1,100^{\circ}C$), nozzle type(wall nozzle, pipe nozzle), and nozzle position as variables. In the case of wall nozzles, the NOx reduction efficiency rapidly increased to 87% at 2.5 NSR and slowed down after this. Compared to the upward spray from the pipe nozzle, wall nozzles have narrower range of applicable reaction temperature. In the case of pipe nozzles, it rapidly increased to 77% at 1.5 NSR. But the pipe nozzle downward had no NOx reduction efficiency; on the contrary, NOx increased. When the reducing agent was sprayed upward from a pipe nozzle, the NOx reduction efficiency was 50~75% in the range of 0.5~1.5 NSR, and the NOx reduction efficiency was constant without fluctuations even in the change of reaction temperature from 890 to $1,000^{\circ}C$. When 5% urea solution was sprayed upward from the pipe nozzle, 200 ppm NOx decreased to approximately 60 ppm at 1.2 NSR, and the non-reacted $NH_3$ was 50~100 ppm. In this condition, we expect over 90% NOx reduction efficiency without additional supply of $NH_3$ to SCR at the back of SNCR.

Coupled Hydro-Mechanical Modelling of Fault Reactivation Induced by Water Injection: DECOVALEX-2019 TASK B (Benchmark Model Test) (유체 주입에 의한 단층 재활성 해석기법 개발: 국제공동연구 DECOVALEX-2019 Task B(Benchmark Model Test))

  • Park, Jung-Wook;Kim, Taehyun;Park, Eui-Seob;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.670-691
    • /
    • 2018
  • This study presents the research results of the BMT(Benchmark Model Test) simulations of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to predict fault reactivation and the coupled hydro-mechanical behavior of fault. BMT scenario simulations of Task B were conducted to improve each numerical model of participating group by demonstrating the feasibility of reproducing the fault behavior induced by water injection. The BMT simulations consist of seven different conditions depending on injection pressure, fault properties and the hydro-mechanical coupling relations. TOUGH-FLAC simulator was used to reproduce the coupled hydro-mechanical process of fault slip. A coupling module to update the changes in hydrological properties and geometric features of the numerical mesh in the present study. We made modifications to the numerical model developed in Task B Step 1 to consider the changes in compressibility, Permeability and geometric features with hydraulic aperture of fault due to mechanical deformation. The effects of the storativity and transmissivity of the fault on the hydro-mechanical behavior such as the pressure distribution, injection rate, displacement and stress of the fault were examined, and the results of the previous step 1 simulation were updated using the modified numerical model. The simulation results indicate that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing interaction and collaboration with other research teams of DECOVALEX-2019 Task B and validated using the field experiment data in a further study.

Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders

  • He, Jun;Lin, Zhaofei;Liu, Yuqing;Xu, Xiaoqing;Xin, Haohui;Wang, Sihao
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.553-568
    • /
    • 2020
  • Steel-concrete composite structures have been extensively used in building, bridges, and other civil engineering infrastructure. Shear stud connectors between steel and concrete are essential in composite members to guarantee the effectiveness of their behavior in terms of strength and deformability. This study focuses on investigating the shear stiffness of headed studs embedded in several types of concrete with wide range of compressive strength, and their effects on the elastic behavior of steel-concrete composite girders were evaluated. Firstly, totally 206 monotonic push-out tests from the literature were reviewed to investigate the shear stiffness of headed studs embedded in various types of concrete (NC, HPC, UHPC etc.). Shear stiffness of studs is defined as the secant stiffness of the load-slip curve at 0.5Vu, and a formulation for predicting defined shear stiffness in elastic state was proposed, indicating that the stud diameter and the elastic modulus of steel and concrete are the main factors. And the shear stiffness predicted by the new formula agree well with test results for studs with a diameter ranging from 10 to 30 mm in the concrete with compressive strength ranging from 22.0 to 200.0MPa. Then, the effects of shear stiffness on the elastic behaviors of composite girders with different sizes and under different loading conditions were analyzed, the equations for calculating the stress and deformation of simply supported composite girders considering the influence of connection's shear stiffness were derived under different loading conditions using classical linear partial-interaction theory. As the increasing of shear stiffness, the stress and deflection at the most unfavorable section under partial connected condition tend to be those under full connected condition, but the approaching speed decreases gradually. Finally, the connector's shear stiffness was recommended for fully connection in composite girders with different dimensions under different loading conditions. The findings from present study may provide a reference for the prediction of shear stiffness for headed studs and the elastic design of steel-concrete composite girder.

Study on Friction Energy of Rubber Block Under Vertical Load and Horizontal Velocity (고무블록의 수직 하중 및 수평 속도에 따른 마찰에너지 연구)

  • Kim, Jin Kyu;Yoo, Sai Rom;Lee, Il Yong;Kim, Doo Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.905-912
    • /
    • 2013
  • Rubber is one of the most commonly used materials in various fields because of its unique viscoelastic properties. Friction occurs when a tire constantly makes contact with the ground. As a result, friction causes wear. The frictional energy caused by friction is a primary factor in the wear mechanism. The frictional energy is affected by various conditions (temperature, roughness of ground, shape of rubber, load, and materials). In this study, the analysis was preceded by considering the vertical load and the horizontal velocity to the rubber using ABAQUS/explicit. The contact pressure, and friction energy are derived using the shear force and slip distance. The actual behavior of the rubber test data were compared with the analysis results.

Numerical Calculation and Validation for Rudder Cavitation of a Large Container Ship (초대형 컨테이너선박 방향타의 캐비테이션 수치계산 및 검증)

  • Kim, Gun-Do;Moon, Il-Sung;Kim, Kyoung-Youl;Van, Suk-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.568-577
    • /
    • 2006
  • With the increase of ship size and speed, the loading on the propeller is increasing, which in turn increases the rotational speed in the propeller slipstream. The rudder placed in the propeller slip stream is therefore subject to severe cavitation with the increased angle of attack due to the increased rotational induction speed of the propeller. In the present paper the surface panel method, which has been proved useful in predicting the sheet cavitation on the propeller blade, is applied to solve the cavity boundary value problem on the rudder. The problem is then solved numerically by discretizing the rudder and cavity surface elements of the quadrilateral panels with constant strengths of sources and dipoles. The strengths of the singularities are determined satisfying the boundary conditions on the rudder and cavity surfaces. The extent of the cavity, which is unknown a priori, is determined by iterative procedure. Series of numerical experiments are performed increasing the degree of complexity of the rudder geometry and oncoming flows from the simple hydrofoil case to the real rudder in the circumferentially averaged propeller slipstream. Numerical results are presented with experimental results.

Effects of Flexural Rigidity of Center Tower in Four-Span Suspension Bridges (4경간 현수교에서의 중앙주탑 휨강성의 영향)

  • Gwon, Sun-Gil;Yoo, Hoon;Choi, Dong-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.49-60
    • /
    • 2014
  • For simple and accurate analysis for behaviors of multi-span suspension bridges which are expected to be frequently constructed as strait-crossing bridges, the deflection theory as the peculiar theory of a suspension bridge can be applied. This paper performs a structural analysis for four-span suspension bridges using the deflection theory. Simply-supported beams with tension are used for girders and the deflections of the beams due to the vertical loads and moments at supports are calculated. The calculation is performed iteratively until the deflections satisfy the compatibility equations of cables. The results of the deflection theory analysis considering tower rigidity are compared with those of the finite element analysis for verification. Importance of the tower rigidity for four-span suspension bridges is confirmed using various compatibility equations of the cable due to variation of the constraint conditions between main cable and top of towers. In addition, the simple parametric analysis for variation of the center tower rigidity is performed.

Modeling of the Powertrain System and the Vehicle Body for the Analysis of the Driving Comfortability (승차감 해석을 위한 동력전달계와 차량계의 모델링)

  • Park, Jin-Ho;Lee, Jang-Mu;Jo, Han-Sang;Gong, Jin-Hyeong;Park, Yeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.926-936
    • /
    • 2000
  • Actual and strict definition of the shift quality for the powertrain system equipped an automatic transmission must be understood through the acceleration change of the vehicle body, which the driver directly feels as a shift shock. For this reason, it is necessary to concurrently analyze the characteristics of the powertrain system and the vehicle body. This paper presents the mathematical model of the vehicle body, which is based on the equivalent lumped system, to append to the developed model of the powertrain system. The concept of tire slip is also introduced for the experimental relationship between tire/road and driving force. Using the developed dynamic simulation programs, shift transients characteristics are analyzed. Theoretical results are compared with experimental ones from real car tests in equal conditions in order to prove the validity of presented model. In these tests, the system to measure the vehicle acceleration is used with various speeds and engine throttle sensors. It is expected that the presented modeling techniques can provide good predictions of the vehicle driving comfortability.