Browse > Article
http://dx.doi.org/10.7474/TUS.2018.28.6.670

Coupled Hydro-Mechanical Modelling of Fault Reactivation Induced by Water Injection: DECOVALEX-2019 TASK B (Benchmark Model Test)  

Park, Jung-Wook (Geologic Environment Division, Korea Institute of Geoscience and Mining Resources)
Kim, Taehyun (Geologic Environment Division, Korea Institute of Geoscience and Mining Resources)
Park, Eui-Seob (Geologic Environment Division, Korea Institute of Geoscience and Mining Resources)
Lee, Changsoo (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute)
Publication Information
Tunnel and Underground Space / v.28, no.6, 2018 , pp. 670-691 More about this Journal
Abstract
This study presents the research results of the BMT(Benchmark Model Test) simulations of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to predict fault reactivation and the coupled hydro-mechanical behavior of fault. BMT scenario simulations of Task B were conducted to improve each numerical model of participating group by demonstrating the feasibility of reproducing the fault behavior induced by water injection. The BMT simulations consist of seven different conditions depending on injection pressure, fault properties and the hydro-mechanical coupling relations. TOUGH-FLAC simulator was used to reproduce the coupled hydro-mechanical process of fault slip. A coupling module to update the changes in hydrological properties and geometric features of the numerical mesh in the present study. We made modifications to the numerical model developed in Task B Step 1 to consider the changes in compressibility, Permeability and geometric features with hydraulic aperture of fault due to mechanical deformation. The effects of the storativity and transmissivity of the fault on the hydro-mechanical behavior such as the pressure distribution, injection rate, displacement and stress of the fault were examined, and the results of the previous step 1 simulation were updated using the modified numerical model. The simulation results indicate that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing interaction and collaboration with other research teams of DECOVALEX-2019 Task B and validated using the field experiment data in a further study.
Keywords
Fault reactivation; Benchmark Model Test; DECOVALEX-2019; TOUGH-FLAC; Coupled Hydro-Mechanical Model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cappa, F., Rutqvist, J., 2011, Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2, International Journal of Greenhouse Gas Control, Vol. 5, pp. 336-346.   DOI
2 Cuisiat, F., Jostad, H.P., Andresen, L., Skurtveit, E., Skomedal, E., Hettema, M., Lyslo, K., 2010, Geomechanical integrity of sealing faults during depressurization of the Statfjord field, Journal of Structural Geology, Vol. 32, pp. 1754-1767.   DOI
3 Gudmundsson, A., 2004, Effects of Young's modulus on fault displacement. Comptes Rendus Geoscience, Vol. 336, pp. 85-92.   DOI
4 Guglielmi, Y., Elsworth, D., Cappa, F., Henry, P., Gout, C., Dick, P., Durand, J., 2015, In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales, Journal of Geophysical Research: Solid Earth, Vol. 120, pp. 7729-7748.   DOI
5 Gutierrez, M., Makurat, A., 1997, Coupled HTM modelling of cold water injection in fractured hydrocarbon reservoirs, International Journal of Rock Mechanics and Mining Sciences, Vol. 34, pp113.e1-113.e15n
6 Kim, H.M., Rutqvist, J., Ryu, D.W., Choi, B.H., Sunwoo, C., Song, W.K., 2012, Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance, Applied Energy, Vol. 92, pp. 653-667.   DOI
7 Leijon, B., 1993, Mechanical properities of fracture zones, SKB Technical Report TR 93-19.
8 Morris, J.P., Hao, Y., Foxall, W., McNab, W., 2011, A study of injection-induced mechanical deformation at the In Salah CO2 storage project, International Journal of Greenhouse Gas Control, Vol. 5, pp. 270-280.   DOI
9 Orlic, B., Heege, J., Wassing B., 2011, Assessing the integrity of fault- and top seals at CO2 storage sites, Energy Procedia, Vol. 4, pp. 4798-4805.   DOI
10 Park, J.W., Rutqvist, J., Ryu, D.W., Park, E.S., Synn, J.H., 2016, Coupled thermal-hydrological-mechanical behavior of rock mass surrounding a high-temperature thermal energy storage cavern at shallow depth, International Journal of Rock Mechanics & Mining Sciences, Vol. 83, pp. 149-161.   DOI
11 Park, J.W., Park, E.S., Kim, T., Lee, C., Lee, J., 2018, Hydro-mechanical modelling of fault slip induced by water injection: DECOVALEX-2019 Task B (Step 1), Tunnel & Underground Space, Vol. 28, pp. 400-425.
12 Peng, H.-Y., Yeh, H.-D, Yang, S.-Y., 2002, Improved numerical evaluation of the radial groudwater flow equation, Advances in Water Resources, Vol. 25, pp. 663-675.   DOI
13 Rinaldi, A.P., Rutqvist, J., Cappa, F., 2014, Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection, International Journal of Greenhouse Gas Control, Vol. 20, pp. 117-131.   DOI
14 Rutqvist, J., Dobson, P.F., Garcia, J., Hartline, C., Jeanne, P., Oldenburg, C.M., Vasco, D.W., Walters, M., 2015, The northwest Geysers EGS demonstration project, California: Pre-stimulation modeling and interpretation of the stimulation. Mathematical Geosciences, Vol. 47, pp. 3-29.   DOI
15 Rutqvist, J., Graupner, B., Guglielmi, Y., 2017, Fault Slip Test - Modelling the induced slip of a fault in argillaceous rock - Discussion, Presentation at the 4th workshop of DECOVALEX-2019, Kingston, UK.
16 Rutqvist, J., 2012, Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations, Computers & Geosciences, Vol. 37, pp. 739-750.
17 Vidal-Gilbert, S., Nauroy, J.-F., Brosse, E., 2009, 3D geomechanical modelling for CO2 geologic storage in the Dogger carbonates of the Paris Basin. International Journal of Greenhouse Gas Control, Vol. 3, pp. 288-299.   DOI
18 Bohloli, B., Choi, J.C., Skurtveit, E., Grande, L., Park, J., Vannest, M., 2015, Criteria of fault geomechanical stability during a pressure buildup, IEAGHG report 2015/04. Cheltenham, UK.
19 Rutqvist, J., Tsang, C.F., 2012, Multiphysics processes in partially saturated fractured rock: Experiments and models from Yucca Mountain. Reviews of Geophysics, Vol. 50, RG3006.
20 Rutqvist, J., Wu, Y-S. Tsang, C.F., Bodvarsson, G., 2002, A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, International Journal of Rock Mechanics and Mining Sciences, Vol. 39, pp. 429-442.   DOI
21 Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E., 1980, Validity of cubic law for fluid flow in a deformable rock fracture, Water Resources Research, Vol. 16, pp. 1016-1024.   DOI