• Title/Summary/Keyword: Slip Speed

Search Result 371, Processing Time 0.034 seconds

Test method study about characteristic of static states for Maglev LIM (자기부상열차용 선형유도전동기 정특성 시험방법에 대한 연구)

  • Kim, Jung-Chul;Kim, Bong-Chul;Kim, Dea-Kwang;Park, Yeong-Ho;Kim, Chul-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.549-554
    • /
    • 2008
  • The recent trains are almost being operated by the mechanical propulsion force to drive the gear and wheel with the traction motor. However Magnetic Levitation Vehicle is differently operated. Magnetic Levitation Vehicle is applied with Linear Induction Motor(LIM) that has many advantage like to high capability of going up to slope, low noise, easy to control of speed. So domestic and many advanced countries are interested in Magnetic Levitation Vehicle and they have been studying about it continuously. Thus this paper is studied the LIM test method of static states and guess the optimum driving point by characteristic of static states for LIM. The test items are measurement of thrust force by changed air gap, measurement of thrust force and normal force by changed slip frequency etc.

  • PDF

A Study of Brake Force Detection Characteristics for Field Operation of ISO Brake Tester (ISO 제동시험기 실증운영을 통한 제동력 검출 특성에 관한 연구)

  • KWON, Kenan;GU, Youngjin;BAE, Jinmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.13-24
    • /
    • 2018
  • According to DEKRA (a Germany Certification and Inspection Agency)'s accident rate analysis by vehicle defect factor, as a result of analysis of the causes of accidents by flaws, it was found that braking devices accounted for 41%. Defects in the braking system are closely related to the accident, so it is very important to find faulty brking systems to ensure safety. The EU and USA uses ISO brake tester and the Korea is brake teater is first introduse in Japan for vehicle inspection and maintanance. KOTSA introduce the ISO brake tester in order to promote the advanced standardization of the inspection equipment and inspection tecnology, and examined the detection characteristics and applied it to the improvement direction of the brake tester to secure the driving safety.

Analysis of Shear Behavior of Shear Key for Concrete Track on Railway Bridge Considering Construction Joint (타설 경계면을 고려한 철도교 콘크리트궤도 전단키의 전단 거동 해석)

  • Lee, Seong-Cheol;Kang, Yun-Suk;Jang, Seung Yup
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.341-350
    • /
    • 2016
  • Concrete track on railway bridges should be designed to effectively respond to the movement of the superstructure of the bridge. In the design procedure, shear keys are generally placed on the protection concrete layer (PCL) before casting the concrete track so the shear force due to slip between the concrete track and the bridge super-structure can be transferred. In this paper, a nonlinear structural analysis procedure that considers the construction joint has been developed to predict the shear behavior of a shear key. With the developed analysis procedure, it was possible to predict the shear force-shear slip response at the construction joint in a shear key by considering the friction of concrete surface and the dowel action of the rebars. The analysis results showed good agreement with the test results for 4 specimens.

Effect of D-Range Neutral Control of Automatic Transmission on LA-4 Mode Fuel Economy (정지구간에서 자동변속기 D단 중립 제어가 LA-4 모드 주행 연비에 미치는 영향)

  • Wi, Hyo-Seong;Jung, Youn-Sik;Park, Jin-Il;Park, Kyoung-Seok;Lee, Jong-Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.19-23
    • /
    • 2009
  • This paper focuses on vehicle fuel economy improvement using D-Range neutral control of automatic transmission. The system objected to reducing of fuel consumption during idle. Usually, turbine of conventional auto transmission is mechanically linked to wheel during idling condition. Therefore speed ratio of torque converter is zero for that period. This causes needless power loss by the torque converter slip. To improve this inefficiency automobile makers develops electronically-controlled D-range neutral control system. The D-range neutral control system minimizes slip on the torque converter by shifting gear to a neutral position during vehicle stoped with D-range gear position. However there's insufficient study about the effect of D-range neutral control system on vehicle fuel economy. In this paper, researches are performed on effect of D-range neutral control system on vehicle fuel economy by experiment with two different vehicle. And it is also estimated the effect on vehicle fuel economy using computer simulation. As a result, 1.8% of LA-4 mode fuel economy improvement can be achieved in a vehicle by D-range neutral control system.

A Study on Improving Driving Stability System in Slalom and Emergency Case (급선회반복 및 위급상황에서의 주행안정성 시스템에 관한 연구)

  • Park Jung-hyen;Kim Soon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1716-1721
    • /
    • 2005
  • Conventionally, 2WS is used for vehicle sleeting, which can only steering front wheel. In case of trying to high speed slalom or emergency through this kind of vehicle equipped 2WS, it may occur much of side slip angle. On the other hand, 4WS makes decreasing of side slip angle, outstandingly, so it is possible to support vehicle movement stable. And conventional ABS and TCS can only possible control the longitudinal movement of braking equipment and drive which can only availab to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improed braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Lucas Mognon Santiago Prates;Felipe Piana Vendramell Ferreira;Alexandre Rossi;Carlos Humberto Martins
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.451-469
    • /
    • 2023
  • The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.

A Study on the Flight Initiation Wind Speed of Wind-Borne Debris (강풍에 의한 비산물의 비행 시작 풍속에 관한 연구)

  • Jeong, Houigab;Lee, Seungho;Park, Junhee;Kwon, Soon-duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.105-110
    • /
    • 2020
  • This study provides a method and data for predicting the flight initiation wind speed of wind-borne debris. From the force equilibrium acting on debris including aerodynamic and inertia forces, the equation for predicting the flight initiation wind speeds are presented. Wind tunnel tests were carried out to provide necessary aerodynamic data in the equation for the debris with various aspect ratios. The proposed equation for flight initiation wind speeds was validated from free flying tests in the wind tunnel. The flights of debris were mostly initiated by slip when width to thickness was less than 10, otherwise overturning were dominant. The actual flight initiation speeds were lower than that of the computed ones. The surface boundary layer flow and the gap between the debris and surface might affect the prediction error.

Numerical Calculation and Validation for Rudder Cavitation of a Large Container Ship (초대형 컨테이너선박 방향타의 캐비테이션 수치계산 및 검증)

  • Kim, Gun-Do;Moon, Il-Sung;Kim, Kyoung-Youl;Van, Suk-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.568-577
    • /
    • 2006
  • With the increase of ship size and speed, the loading on the propeller is increasing, which in turn increases the rotational speed in the propeller slipstream. The rudder placed in the propeller slip stream is therefore subject to severe cavitation with the increased angle of attack due to the increased rotational induction speed of the propeller. In the present paper the surface panel method, which has been proved useful in predicting the sheet cavitation on the propeller blade, is applied to solve the cavity boundary value problem on the rudder. The problem is then solved numerically by discretizing the rudder and cavity surface elements of the quadrilateral panels with constant strengths of sources and dipoles. The strengths of the singularities are determined satisfying the boundary conditions on the rudder and cavity surfaces. The extent of the cavity, which is unknown a priori, is determined by iterative procedure. Series of numerical experiments are performed increasing the degree of complexity of the rudder geometry and oncoming flows from the simple hydrofoil case to the real rudder in the circumferentially averaged propeller slipstream. Numerical results are presented with experimental results.

Preliminary Performance Assessment of a Fuel-Cell Powered Hypersonic Airbreathing Magjet

  • Bernard Parent;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.703-712
    • /
    • 2004
  • A variant of the magnetoplasma jet engine (magjet) is here proposed for airbreathing flight in the hypersonic regime. As shown in Figure 1, the engine consists of two distinct ducts: the high-speed duct, in which power is added electromagnetically to the incoming air by a momentum addition device, and the fuel cell duct in which the flow stagnation temperature is reduced by extracting energy through the use of a magnetoplas-madynamic (MPD) generator. The power generated is then used to accelerate the flow exiting the fuel cells with a fraction bypassed to the high-speed duct. The analysis is performed using a quasi one-dimensional model neglecting the Hall and ion slip effects, and fix-ing the fuel cell efficiency to 0.6. Results obtained show that the specific impulse of the magjet is at least equal to and up to 3 times the one of a turbojet, ram-jet, or scramjet in their respective flight Mach number range. Should the air stagnation temperature in the fuel cell compartment not exceed 5 times the incoming air static temperature, the maximal flight Mach number possible would vary between 6.5 and 15 for a magnitude of the ratio between the Joule heating and the work interaction in the MPD generator varied between 0.25 and 0.01, respectively. Increasing the mass flow rate ratio between the high speed and fuel cell ducts from 0.2 to 20 increases the engine efficiency by as much as 3 times in the lower supersonic range, while resulting in a less than 10% increase for a flight Mach number exceeding 8.

  • PDF

MEASUREMENT OF FIELD PERFORMANCE FOR TRACTOR

  • M. J. NahmGung;Park, C. H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.819-826
    • /
    • 2000
  • This study was performed to develop a measurement system of tractor field performance for plow and rotary operations. Measurement system for tractor consisted of torque sensors to measure torque of drive axles and PTO axle, speed sensors to measure rotational speed of drive axles and engine, microcomputer to control data logger, and data logger as I/O interface system. The measurement system was installed on four-wheel-drive tractor. Four-element full-bridge type strain gages were used for torque measurement of drive axles and optical encoders were used to measure speeds of drive axles and engine. Slip rings were mounted on the rotational axles. Signals from sensors were inputted to data logger that was controlled by microcomputer with parallel communication. Sensors were calibrated before the field tests. Regression equations were found on completion of the calibrations. The field experiment was performed at paddy fields and uplands. Rotary and plow were used when the tractor was operated in the field. Travelling speeds of the tractor were 1.9 km/h, 2.7 km/h, 3.7 km/h, 5.5 km/h, 8.2 km/h, and 11.8 km/h. Operating depths of implements were maintained approximately 20cm during the tests. Torque data of drive axles were different at each location during plow and rotary operations. Results showed that torque of rear axles were greater than those of front axles. Total torque were 6860 - 11064 Nm at the upland and 7360 - 14190 Nm at the paddy field for plow operations. It was found that torque at the paddy field were about 20% greater than those at the upland for plow operations. Torque data showed that rotary operations required less power than plow operation at the paddy field and the upland. Torque measurements at each axle for rotary operations were only 8 - 16% of plow operations in the upland and 15 - 20% in the paddy field.

  • PDF