• Title/Summary/Keyword: Slip Control

Search Result 599, Processing Time 0.029 seconds

항공기용 제동장치의 ABS 제어를 위한 최적 슬립율 결정에 관한 시험적 연구 (Experimental Research on Finding Best Slip Ratio for ABS Control of Aircraft Brake System)

  • 이미선;송원종;최종윤
    • 한국군사과학기술학회지
    • /
    • 제20권5호
    • /
    • pp.597-607
    • /
    • 2017
  • The general control method for Anti-lock Brake System(ABS) is that the wheel slip ratio is observed and the braking force is controlled in real time in order to keep the wheel slip ratio under the value of the best slip ratio. When a wheel runs on the state of the best slip ratio, the ground friction of the wheel approaches the highest value. The value of best slip ratio, theoretically, is known as the value between 10 and 20 % and it is dependant on the ground condition such as dry, wet and ice. It is an important parameter for the braking performance and affects the braking stability and efficiency. In this thesis, an experimental method is suggested, which is a reliable way to decide the best slip ratio through dynamo tests simulating aircraft taxiing conditions. The obtained best slip ratio is proved its validity by results of aircraft taxiing tests.

Robust Wheel Slip Controller for Vehicle Stability Control

  • Kwak, Byung-Hak;Park, Young-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.174.4-174
    • /
    • 2001
  • Vehicle stability control system can enhance the vehicle stability and handling in the emergency situations through the control of traction and braking forces at the individual wheels. To achieve the desired performance, the wheel slip controller manages the hydraulic braking system to generate the desired braking force at each wheel. In this study, we propose the wheel slip controller for the generation of the braking forces based on multiple sliding mode control theory with the pulse width modulation. The proposed controller follows to the slip ratio and the brake pressure the desired ones so that the vehicle stability controller can Intervene braking force at each wheel. We show the validity and usefulness of the proposed controller through computer simulations.

  • PDF

퍼지 알고리즘을 이용한 유도전동기 간접벡터제어기의 설계와 엘리베이터 속도제어 시스템의 응용 (Design of Indirect Vector Controller of Induction Motor using Fuzzy Algorithm and apply to the Speed Control System of Elevator)

  • 경제문;김훈모
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.110-113
    • /
    • 2000
  • In general, speed control method of the elevator system has used motor pole change type or motor primary voltage control type. But it will change to vector control type in order to increase it's reliability, riding comfort and decrease material cost. It is the conception of vector control type in order to increase it's reliability, riding comfort and decrease material cost. It is the conception of vector control that primary current of the induction motor be controlled independently with magnetizing current(field current of DC motor) and torque current(armature current of DC motor). In this paper, by analyzing the effect of the time constant variation of rotor of the induction motor on the slip frequency type indirect vector control, a drive system for the motor will be constructed using a fuzzy slip frequency type indirect vector controller with fuzzy control method for estimating the vector time constant in the slip frequency type indirect vector control. The goal of this study is to enabling even more efficient speed control by constructing on elevator driver based on the newly developed drive system.

  • PDF

Anti-slip 제어기를 이용한 유도전동기 병렬운전 (Parallel Running of Induction Motor using Anti-slip Controller)

  • 김중교;이주
    • 전기학회논문지P
    • /
    • 제55권1호
    • /
    • pp.41-46
    • /
    • 2006
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a anti-slip control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the anti-slip control is performed to obtain the maximum transfer of the tractive effort.

자기 부상 열차용 리니어모터의 슬립 주파수 제어에 관한 연구 (A study on the slip frequency control of linear induction motor for magnetic levitation transit)

  • 임달호;김규탁;김영관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.135-138
    • /
    • 1991
  • In this study, a variety of characteristics is considered when LIM for transit is driven with acceleration and deceleration. From the characteristics of constant voltage, with V/f ratio fixed, slip frequency is derived. With slip frequency of 12[Hz] and objective velocity of 40[km/h], the robust control characteristics which are generated constant thrust and normal force, except for open-loop control interval, are obtained.

  • PDF

가변구조제어 이론을 이용한 유도 서보 전동기의 위치제어 (Position Control for Induction Servo Motors Using a Theory of Variable Structure Control)

  • 홍순일;홍정표
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.132-139
    • /
    • 2005
  • This paper describes the application of sliding mode control based on the variable structure control(VSC) concept for high-performance position control of an induction servo motor A design method based on external load parameters has been developed for the robust control of AC induction servo drive. Also, a slip frequency vector control with software current control technique has been adopted to achieve fast response of an induction motor drive The position control scheme is comprised of a variable structure controller and slip frequency vector control for inverter fed induction servo motor. Simulated results are given to verify the proposed design method by adoption of sliding mode and show robust control for a change of shaft inertia, viscous friction and torque disturbance.

Fuzzy Technique based Chopper Control for Slip Energy Recovery System with Twelve-Pulse Converter

  • Tunyasrirut, S.;Ngamwiwit, J.;Furuya, T.;Yamamoto, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.509-514
    • /
    • 2004
  • This paper introduces the modified slip energy recovery system in order to improve its power factor and to reduce harmonics of line current waveforms. Twelve pulse line commutated converter with the chopper type IGBT is applied where the chopper is applied across the DC terminal and the chopped DC is fed to the converter operating as an inverter and then passed through the wye-wye and delta-wye transformer circuit. This scheme leads to be able to adjust the speed of the motor by the duty cycle of the chopper operating in PWM mode. The fuzzy logic controller is also introduced to the modified slip energy recovery system for keeping the motor speed to be constant when the load varies. The experimental results in testing the 0.22 kW wound rotor induction motor from no-load condition to rated condition show the effectiveness of the proposed control scheme.

  • PDF

이동 로봇의 퍼지 재점착 제어 (Fuzzy Re-adhesion Control for Wheeled Robot)

  • 권선구;허욱열;김진환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.30-32
    • /
    • 2005
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and floor decreases suddenly, the robot begins slip. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. First of all, this paper shows that conventional PI control can not be applied to a wheeled robot of the light weight. Secondly, proposed fuzzy logic is applied to the Takagi-Sugeno model for the configuration of fuzzy sets. For the design of Takagi-Sugeno model and fuzzy rule, proposed algorithm uses FCM(Fuzzy c-mean clustering method) algorithm. The proposed fuzzy logic controller(FLC) is pretty useful with prevention of the slip phenomena for the controller performance in the re-adhesion control strategy.

  • PDF

슬립율 제어를 위한 자동차용 유압 조절시스템의 최적 설계에 관한 연구 (A Study on Optimal Design of Automotive Hydraulic Control System for Slip Ratio Control)

  • 김대원;김진한;최석창
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.41-50
    • /
    • 1998
  • In this study, to investigate a characteristics of slip ratio control of H.C.U for ABS, half car model tester were developed and a new H.C.U. was compactly designed comparing to the commercical H.C.U. for ABS. In half car model tester, variable inertia wheel has been used to load the car weights and braking forces according to the road surface conditions which were realized by pneumatic cylinder. And solenoid valves using P.W.M. (Pulse Width Modulation) method were installed in the new H.C.U The slip ratio characteristics of tire had been measured using half car model tester and the results were used in the control simulation for a new H.C.U.

  • PDF

신경망을 이용한 엔진/브레이크 통합 VDC 시스템에 관한 연구 (A Study on the Engine/Brake integrated VDC System using Neural Network)

  • 지강훈;정광영;김성관
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.414-421
    • /
    • 2007
  • This paper presents a engine/brake integrated VDC(Vehicle Dynamic Control) system using neural network algorithm methods for wheel slip and yaw rate control. For stable performance of vehicle, not only is the lateral motion control(wheel slip control) important but the yaw motion control of the vehicle is crucial. The proposed NNPI(Neural Network Proportional-Integral) controller operates at throttle angle to improve the performance of wheel slip. Also, the suggested NNPID controller performs at brake system to improve steering performance. The proposed controller consists of multi-hidden layer neural network structure and PID control strategy for self-learning of gain scheduling. Computer Simulation have been performed to verify the proposed neural network based control scheme of 17 dof vehicle dynamic model which is implemented in MATLAB Simulink.