• Title/Summary/Keyword: Sliding device

Search Result 128, Processing Time 0.033 seconds

Effect of the limiting-device type on the dynamic responses of sliding isolation in a CRLSS

  • Cheng, Xuansheng;Jing, Wei;Li, Xinlei;Lu, Changde
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.133-144
    • /
    • 2018
  • To study the effectiveness of sliding isolation in a CRLSS (concrete rectangular liquid-storage structure) and develop a reasonable limiting-device method, dynamic responses of non-isolation, sliding isolation with spring limiting-devices and sliding isolation with steel bar limiting-devices are comparatively studied by shaking table test. The seismic response reduction advantage of sliding isolation for concrete liquid-storage structures is discussed, and the effect of the limiting-device type on system dynamic responses is analyzed. The results show that the dynamic responses of sliding isolation CRLSS with steel bar-limiting devices are significantly smaller than that of sliding isolation CRLSS with spring-limiting devices. The structure acceleration and liquid sloshing wave height are greatly influenced by spring-limiting devices. The acceleration of the structure in this case is close to or greater than that of a non-isolated structure. Liquid sloshing shows stronger nonlinear characteristics. On the other hand, sliding isolation with steel bar-limiting devices has a good control effect on the structural dynamic response and the liquid sloshing height simultaneously. Thus, a limiting device is an important factor affecting the seismic response reduction effect of sliding isolation. To take full advantage of sliding isolation in a concrete liquid-storage structure, a reasonable design of the limiting device is particularly important.

Analysis for designing a device to transport radioactive contaminated materials in hotcell (핫셀의 방사성오염물질 운반장치 설계를 위한 분석)

  • 홍동희;진재현;정재후;김영환;윤지섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1021-1024
    • /
    • 2004
  • During demonstrations of a process conditioning spent nuclear fuels, it may be necessary to transport modularized parts of process equipment out of a hot cell because of modules' failure or completion of demonstrations. It may be not easy to transport modules because modules will be contaminated. For this purpose, we have developed a prototype of a device transporting radioactive contaminated materials. We have analyzed conditions of a hot cell and requirements of the device, designed and manufactured a scaled-down prototype of the device, and done some performance tests such as running on the rail, running on the flat floor, and carrying capability of a sliding upper part. From the tests, it has been shown that running on the rail and floor was smooth but the sliding part was deflected if the sliding distance was long. These result will be reflected to a design of the improved transporting device which will be used during demonstrations.

  • PDF

Turbulent Drag Reduction Using the Sliding-Belt Device (미끄러지는 벨트 장치를 이용한 난류 항력 감소)

  • Choi, Byunggui;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1481-1489
    • /
    • 1999
  • The sliding-belt concept introduced by Bechert et al. (AIAA J., Vol. 34, pp. 1072~1074) is numerically applied to a turbulent boundary layer flow for the skin-friction reduction. The sliding belt is moved by the shear force exerted on the exposed surface of the belt without other dynamic energy input. The boundary condition at the sliding belt is developed from the force balance. Direct numerical simulations are performed for a few cases of belt configuration. In the ideal case where the mechanical losses associated with the belt can be ignored, the belt velocity increases until the integration of the shear stress over the belt surface becomes zero, resulting in zero skin friction on the belt. From practical consideration of losses occurred In the belt device, a few different belt velocities are given to the sliding belt. It is found that the amount of drag reduction is proportional to the belt velocity.

A Study on the Sliding Distance and the Proper Position of Supporter with respect to the Wedge Angle in the Wedge Type Rail Clamp

  • Han, Dong-Seop;Han, Geun-Jo;Lee, Seong-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.115-120
    • /
    • 2006
  • The rail clamp is the device to prevent the crane slips along rails from the wind blast as well as to locate a container crane in the set position in operating mode. In this study we conduct the research for the sliding distance of rail clamp and the proper position of supporter with respect to the wedge angle in the wedge type rail clamp. The sliding distance to display the clamping force of the jaw pad corresponding to the design wind speed criteria is determined by the total displacement of the rail clamp at the roller center and the wedge angle. And the supporter is the device to prevent the overload which is applied on each part of the rail clamp by wind speed increment, because a clamping force is generated by the sliding of the wedge due to the wind. Accordingly the position of the supporter to prevent the overload is determined by analyzing the forces applied to the rail clamp. In order to analyze the sliding distance and the proper position of supporter with respect to the wedge angle as the wind speed is 40m/s, 5-kinds of wedge angles, such as 2, 4, 6, 8, $10^{\circ}$, were adopted as the design parameter.

  • PDF

A Study on Improvement of Structural Sliding Method Using AC Induction Motor Servo Control Device (AC유도전동기 서보제어장치를 이용한 구조물 슬라이딩공법)

  • Cho, Young-nam;Han, Jae-woong;Jang, Won-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.235-237
    • /
    • 2018
  • In spite of the superiority of the sliding method in the building construction field, the AC induction motor servo control device is used as the power control technology in the building construction field in order to improve the problems of the hydraulic power control method, thereby contributing to the precision control and the productivity improvement. Based on Induction Motor Servo Controller, we proposed the development of a mobile sliding method using a complex combination of PC and MITY (MS) Servo.

  • PDF

Nonlinear, seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAIVS system

  • Nagarajaiah, Satish;Mao, Yuqing;Saharabudhe, Sanjay
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.375-393
    • /
    • 2006
  • Under high velocity, pulse type near source earthquakes semi-active control systems are very effective in reducing seismic response base isolated structures. Semi-active control systems can be classified as: 1) independently variable stiffness, 2) independently variable damping, and 3) combined variable stiffness and damping systems. Several researchers have studied the effectiveness of independently varying damping systems for seismic response reduction of base isolated structures. In this study effectiveness of a combined system consisting of a semi-active independently variable stiffness (SAIVS) device and a magnetorheological (MR) damper in reducing seismic response of base isolated structures is analytically investigated. The SAIVS device can vary the stiffness, and hence the period, of the isolation system; whereas, the MR damper enhances the energy dissipation characteristics of the isolation system. Two separate control algorithms, i.e., a nonlinear tangential stiffness moving average control algorithm for smooth switching of the SAIVS device and a Lyapunov based control algorithm for damping variation of MR damper, are developed. Single and multi degree of freedom systems consisting of sliding base isolation system and both the SAIVS device and MR damper are considered. Results are presented in the form of nonlinear response spectra, and effectiveness of combined variable stiffness and variable damping system in reducing seismic response of sliding base isolated structures is evaluated. It is shown that the combined variable stiffness and variable damping system leads to significant response reduction over cases with variable stiffness or variable damping systems acting independently, over a broad period range.

A Study on the Sliding Wear Characteristicsn of the Die Steel for the Cold Molding (냉간성형용 Die 강의 미끄럼 마멸특성에 관한 연구)

  • 전태옥;박흥식;류경곤
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.38-44
    • /
    • 1993
  • The present study was undertaken to investigate the dry wear characteristics of die steel STD 11 for cold molding. The wear test was experimentally carried out under different conditions using a wear device, which was made in laboratory, and in which annular surfaces of wear testing specimens wear rubbed in dry sliding condition with varying the sliding speed, contact pressure, and sliding distance. The wear loss by variation of sliding speed was much in 0.3 m/sec and less in higher speed range above its sliding speed according to formation of the boundary lubrication film. The critical sliding speed with maximum value of the specific wear rate switched over to lower speed side according. as contact pressure increased. The critical sliding distance was increased with decrease in oxidation reaction velocity. The depth below subsurface showing maximum hardness (Hv) came out at the position, $60 \mu m$, of the maximum shear stress due to strain hardening.

Hot and cool temperature control of the car-seat utilizing the thermoelectric device

  • Choi, Hyung-Sik;Kim, You-Shin;Woo, Jung-Jae;Jeon, Chang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1816-1821
    • /
    • 2003
  • The thermoelectric device was applied to a car-seat to control the hot temperature in summer and cold temperature in the winter. The characteristics of the device used to a car-seat were analyzed. The air conditioning structure was designed to regulate the hot side of the thermoelectric device. To control the temperature of the car-seat, a robust control algorithm based on the sliding mode control was applied, and a controller using one-chip microprocessor was developed. The performance of the proposed controller through experiments was shown.

  • PDF

Hot and Cool Temperature Control of the Car-Seat Utilizing the Thermoelectric Device (열전소자를 이용한 카시트의 냉ㆍ난방 제어)

  • Choi, Hyeung-Sik;Kim, You-Shin;Jeon, hang-Hoon;Yun, Sang-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.518-525
    • /
    • 2004
  • The thermoelectric device was applied to a car seat to control the hot temperature in the summer and cold temperature in the winter. The characteristics of the device used to a car seat were analyzed. The air conditioning structure was designed to regulate the hot side of the thermoelectric device. To control the temperature of the car seat, a robust control algorithm based on the sliding mode control was applied, and a controller using one-chip microprocessor was developed. The performance of the proposed controller through experiments was shown.

Conceptual Design of Device Attached to Rotary Type Sliding Door System Using TRIZ and Axiomatic Design (트리즈와 공리적 설계를 활용한, 회전식 중문 슬라이딩 창호 부착 기구의 개념 개발)

  • Lee Kyeong-Won;Kim Hyun-Jun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.299-304
    • /
    • 2005
  • This paper describes the conceptual of device attached to rotary type sliding door system satisfying customer's reguirements. The TRIZ (Russian theory of Inventive Problem Solving) and Axiomatic Design methods are used for generating new ideas at the conceptual design stage efficiently. The ideas will be implemented in real products.

  • PDF