• 제목/요약/키워드: Sliding Mode Observer

검색결과 320건 처리시간 0.026초

전차수 슬라이딩 모드 관측기를 대체하는 축소차수 관측기의 LMI 기반 설계 (An LMI-Based Design of Reduced Order Observers Substitutable for Full Order Sliding Mode Observers)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.232-235
    • /
    • 2008
  • This paper presents an LMI-based method to design reduced order observers by which we can substitute full order sliding mode observers for a class of uncertain time-delay systems. We show that a reduced order observer can be constructed as long as the uncertain system satisfies the previous LMI existence conditions of a full order sliding mode observer. And we give explicit formulas of the reduced order observer gain matrices. Finally, we give a simple LMI-based design algorithm, together with a numerical design example.

적분 슬라이딩 모드 제어기를 이용한 출력 궤환 안정화 (Output Feedback Stabilization using Integral Sliding Mode Control)

  • 오승록
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권3호
    • /
    • pp.142-147
    • /
    • 2003
  • We consider a single-input-single-output nonlinear system which can be represented in a normal form. The nonlinear system has a modeling uncertainties including the input coefficient uncertainty. A high-gain observer is used to estimate the states variables to reject a modeling uncertainty. A globally bounded output feedback integral sliding mode control is proposed to stabilize the closed loop system. The proposed integral sliding mode control can asymptotically stabilize the closed loop system in the presence of input coefficient uncertainty.

Stability Analysis of Visual Servoing with Sliding-mode Estimation and Neural Compensation

  • Yu Wen
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권5호
    • /
    • pp.545-558
    • /
    • 2006
  • In this paper, PD-like visual servoing is modified in two ways: a sliding-mode observer is applied to estimate the joint velocities, and a RBF neural network is used to compensate the unknown gravity and friction. Based on Lyapunov method and input--to-state stability theory, we prove that PD-like visual servoing with the sliding mode observer and the neuro compensator is robust stable when the gain of the PD controller is bigger than the upper bounds of the uncertainties. Several simulations are presented to support the theory results.

Traction Control of Automobiles using a Disturbance Observer with the Approach of Sliding Mode Control

  • Mubin, M.;Moroda, K.;Tashiro, M.;Ouchi, S.;Anabuki, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1738-1743
    • /
    • 2004
  • This paper presents an automobile traction control system by using a sliding mode controller with disturbance observer for estimating the car-body speed. First, we show that the control system, which combines an automobile system and a disturbance observer, can be divided into a controllable system and an estimated one. And, we found out that the effect of the traction control and ABS depends on the air resistance of the car. Then, the sliding mode control system is designed using the obtained combined system. And finally, the stability of this control system is verified by simulation and it shows a very satisfactory results.

  • PDF

적응 슬라이딩 관측기를 이용한 매입형 영구자석 동기전동기의 센서리스 제어 (Sensorless control of IPMSM using an adaptive sliding mode observer)

  • 김원석;강형석;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.216-218
    • /
    • 2006
  • In this paper, a new sensorless control based on an adaptive sliding mode observer is proposed for the interior permanent magnet synchronous motor(IPMSM) drives. With using voltage equation only, the adaptive sliding mode observer was investigated. The proposed adaptive sliding mode observer is applied to overcome the problem caused by using the dynamic equation. Furthermore, the Lyapunov theorem is used to prove the system stability included speed estimate and speed control. The effectiveness of the proposed algorithm is confirmed by the experiments.

  • PDF

A VSS observer-based sliding mode control for uncertain systems

  • Watanabe, Keigo;Jin, Sang-Ho;Kimura, Ichiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1300-1305
    • /
    • 1990
  • A VSS observer-based sliding mode control is described for continuous-time systems with uncertain nonlinear elements, in which the Euclidean norm of unknown element is bounded by a known value. For a case of complete state information, we first derive a sliding mode controller consisting of three parts: a linear state feedback control, an equivalent input and a min-niax control. It is then shown that the present attractiveness condition is simpler than that for a case without using the concept of equivalent input. We next design a VSS observer as a completely dual form to the sliding mode controller. Finally, we discuss a cas of incomplete state information by applying the VSS observer.

  • PDF

슬라이딩 모드 관측기를 이용한 고속 영역에서의 PMSM 센서리스 제어에 관한 연구 (A Study on Sensorless Control of PMSM using Sliding Mode Observer in high speed range)

  • 강계룡;김장목;이상혁;황근배;김경훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.745-749
    • /
    • 2003
  • The iterative sliding mode observer is proposed to control sensorless PMSM(Permanent Magnet Synchronous Motor). Proposed sliding mode observer has the character which is robust to the disturbance and parameter variation. Low pass filter with the variable cutoff frequency is also proposed to compensate rotor angle, it is led to saving memory and minimizing operation time. Experimental results shows that the proposed sliding mode observer leads to the proper performance.

  • PDF

개선된 슬라이딩 모드 관측기에 의한 유도전동기의 센서리스 속도제어 (Sensorless Speed Control of Induction Motor by an Improved Sliding Mode Observer)

  • 장민영;김상균;권영안
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1552-1554
    • /
    • 2008
  • Recently, sensorless induction motor drives have been much studied due to several advantages. Sensorless drives eliminate the additional mounting space, increase the reliability in harsh environments, and reduce the cost of a motor. This paper investigates an improved sliding mode observer for the sensorless speed control of an induction motor. The proposed control strategy is the sliding mode observer with a variable boundary layer for a low-chattering and fast-response control. The proposed sensorless-algorithm is verified through the simulation and experimentation.

Antl-Lock Brake System Control for Buses Based on Fuzzy Logic and a Sliding-Mode Observer

  • Park, Jong-Hyeon;Kim, Dong-Hee;Kim, Yong-Ju
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1398-1407
    • /
    • 2001
  • In this paper an anti-lock brake system (ABS) for commercial buses is proposed based on a fuzzy-logic controller and a sliding-mode observer of the vehicle speed. The brake controller generates pulse width modulated (PWM) control inputs to the solenoid valve of each brake, as a function of the estimated wheel slip ratio. PWM control inputs at the brakes significantly reduce chattering in the brake system compared with conventional on-off control inputs. The sliding-mode observer estimates the vehicle speed with measurements of wheel speed, which is then sed to compute the wheel slip ratio. The effectiveness of the proposed control algorithm is validated by a series of computer simulations of bus driving, where the 14-DOF bus model is used.

  • PDF

개선된 슬라이딩 모드 관측기에 의한 영구자석 동기전동기의 센서리스 속도제어 (Sensorless Speed Control of Permanent Magnet Synchronous Motor by an Improved Sliding Mode Observer)

  • 김영삼;유성내;권영안
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권11호
    • /
    • pp.687-690
    • /
    • 2004
  • Many studies have been performed for the elimination of speed and position sensors which require the additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. This paper investigates an improved sliding mode observer for the sensorless speed control of a permanent magnet synchronous motor. The proposed control strategy is the sliding mode observer with a variable boundary layer for a low-chattering and fast-response control. The proposed algorithm is verified through the simulation and experimentation.