90 KACC 1990. 10. 26 ~27

A VSS Observer-based Sliding Mode Control
for Uncertain Systems

Keigo WATANABE, Sang-Ho JIN and Ichiro KIMURA

Department of Mechanical Engineering, Faculty of Science and Engineering,
Saga University, Honjomachi-1, Saga 840

Abstract

A VSS observer-based sliding mode control is de-
scribed for continuous-time systems with uncertain non-
linear elermnents, in which the Euclidean norm of unknown
element is bounded by a known value. For a case of com-
plete state information, we first derive a shding mode con-
troller consisting of three parts: a linear state feedback
control, an equivalent input and a min-max control. It
is then shown that the present attractiveness condition is
stipler than that for a case without using the concept
of equivalent input. We next design a VSS observer as a
completely dual form to the sliding mode controller. Fi-
nally, we discuss a case of incomplete state information
by applying the VSS observer.

1. Introduction

The sliding mode control or VSS (Variable Structure
System) control has an increased interesting, because it
can realize a robust control for a trajectory control of
yobot arm with unknown clement [1-3]. However, almost
existing sliding ode controls deal with a case when the
state-variable can be completely measurable. As in the
well-known LQ (Linear Quadratic) control, we need use
of an observer to realize a practical sliding mode control
for a case of incomplete state information.

There exist some observer-based sliding mode con-
trols. For example, Bondarev ef al. [4] discussed a sliding
mode control by using a Luenberger-type observer. But,
they did not at all take into account of a duality between
the controller and observer. Recently, Zak el al. [5] inves-
tigated an observer-based sliding mode control by using
a VSS obhserver, which is dual to the min-max controller
derived in Gutinan and Palmor [6].

In this paper we state a VSS observer-based sliding
mode control for an uncertain dynamical system, where
the FEuclidean norm of unknown element is bounded by
a known value. For a case of complete state information,
we first derive a sliding mode controller consisting of three
parts: a linear state feedback control, an equivalent input
and a min-max control, by applying the strictly positive
realness. It is then pointed out that the present attrac-

tiveness condition is much simpler than that for a case
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without using the concept of equivalent input [6]. We
next design a VSS observer as a completely dual form to
the sliding mode controller. Finally, we discuss a case
of incomplete state information by applying the VSS ob-

server.

2. Systems Description

Consider the following continuous-time system de-
scribed by the state-space model:

2{t) = Aa(t) + Bu(t) + B{(t,=(1)) (

— —

where, a(t) € R", u(t) € R™,y(t) € R™.m > r, and ((-)
Is an uncertaln element. It 1s then assumed that the norm
of the uncertain element is bounded by a known scalar p
that 1s.

e ol < p.

where || - || denotes the Buclidean norm, i.e.,

p20

IV

n
il = | >l

i=1
for any vector @ € R?
/2
HA” = [’\mux(ATA)] /

for any matrix A, in which Ap. (') denotes the largest
eigenvalue and similarly Anin(-) denotes the smallest
eigenvalue of a matrix.

3. VSS Controller for the Case of Complete
State Information

In this section, we shall design a VSS controller for
the case when the state variables are all available, that
15, the case of complete state information. It is assumed
that the VSS control input u(t) consists of three inputs:

w{t) 2 w5 (1) + g () + (1) (3)

where u; (1) 15 a linear state feedback input, u..(2) is an
equivalent input when applying the linear state feedback
control to the linear system, and u,p,y(f) Is a min-max



control input.
3.1 Linear state feedback tnput

The following assumption will be utilized in the sub-
sequent discussion.

Assumpiion 1: The pair (A, B) is completely control-
lable. This implies that we can find a matrix K, € R"*"
such that all eigenvalues of the matrix A, £ A— BK. are
in the desired location in the open left half-plane.

Then, we have the linear state feedback control such
that

us(ty = —K.z (4)

3.2 Equivalent input

It is assumed that the system {1) with ¢(:) = 0 is
controlled by (1) + ue4(t).

Assumption 2: There exist real symmetric positive
definite matrices . and P,, where P, is the unique solu-
tion to the algebraic Lyapunov equation:

ATP + PA, =—-Q. (5)

Then, we define the following switching surface for
the control

Se = {z()]o.(t) £ K,=(t) = 0} (6)

RN
where K, = BT P..
we have

Since d.(t) = 0 in the sliding mode,

Go(t) = K A 2(1) + K Bue,(t) =0 (7)
and therefore

Ueq(t) = —(I\',B)“'IK,ACm(t) (8)

where (K, B) is assumed to be nonsingular. Subsequently,
when using u,(2) + u.q4(t), the equivalent system reduces
to

=[I - B(K,B) ' K,)A.x(t) (9)

3.3 Min-maz input

It is here assumed that u,,,,(?) is applied to the sys-
tem (1) with ¢(-) # 0, where u,,,,(¢) is defined as a min-
max controller [6]:

Uinm (t)
- e ﬁ:: S
_ o] :
S

U € {Bye € RM|Inell < g}  for all =(¢) € S,

for all z(t) ¢

—_

0)

Here, p. is to be determined. When defining the general-

ized Lyapunov function as W, = },jofoc, we have
W, =olé. =0l (K,2)
= ol (K,Acx + K,Buey — lpc+1& s B¢)

B cl
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because a sufficient condition for the attractiveness of z(1)
to S, is W, = aTé. <0 for o, # 0 [7]. Using (4) and (8)
in above, it follows that

W, = -7 (BTP.B) 2% 5. +cT(BTP.B)C (1)

flo II

Noting that

Amin( BT P.B)||oli* < o (BT P.B)o.
S /\max(B7 PCB HUC”:Z

and using the property of a vector norm:

oL (BT P.B)C < ||BT P.B(|||jo.|i
< |IBT P.Bli||¢ll llo]l
S /\max(BTPcB)” “UCH/)

it is seen that (11) can be written as

We < =Nin(BTP.B) o> 250 + A (BT P B)

”Ur 4
o] I
(12)
Henceforth, if
Anax( BT P.B
pe> { ) (13)

/\min(BT Pc B) "

then S, is globally asymptotically attractive at every-
where.

Thus, it is found that the present attractiveness con-
dition is simpler than that for the case without using the
equivalent input [6]. The block diagram for this case is
depicted in Fig. 1.

4. Example 1

To illustrate the preceding results, consider the fol-
lowing second-order system:

n| [0 1 T 0 0l
[12]—[0 ——1} [x2]+[l]u+[lj|"‘;"bl]lll
where 7.35sinz; is assumed to be unknown, but p =

|7.35sin 2| = 7.35 is known. Letting K. = {k.1 k.o,
it follows that

0 1
Ao = [—kcl —(1 +k:2)]

A necessary and sufficient condition that assures the sta-
hility of the matrix A, is that, in the characteristic equa-
tion [Ae — AI| = A2+ (1 + k)X + ko1, coefficients 1+ k.o
and k., have the same sign and 1 + k.2 > 0. Since

ATP. + P.A,
_2kdpt.
Pl — pC'Z(l + AC") - kclpcS

Pt — Pe2{l 4 ke2) — keipes
QPC‘Z - chg(l -+ L" )
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Fig. 1 A V5SS control system with complete

state information.

setting for example K, 1], we have

(1

P2 =paa =1

hecause i, = BT P,. If we choose K [6 4], then

)

Since Q. must be positive definite, it is enough to choose
that p., =4, so that
HHEL

|

The linear state feedback input is then given by

12
11 — Pa

11 —Pa

a.=| ;

12 7
7 8

4 1
11

Q. ]>0, P.

Ulg = —6$1 - 4(172
and the equivalent input is given by

—[K,B]"'K, Az £ K,z

- 1][ 0 _}5

Uegq

i

]:c=6x1 + 4z,

Therefore, the equivalent linear system matrix reduces to

|

0
0

1

Ac+ BK,, = [ O
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In this case, it should be noted that the equivalent lin-
ear system is identical to the original linear part. Fur-
thermore, if we choose g, = 8, then the switching input
becomes

Upm = —8 sgn(z] + z2)

For the case without using the equivalent input, we
must further check the positive definiteness of @, which
satisfies the equation [6]:

(P.BBTP)A.+ AT (P.BBTP,)

i

-10 -8
Clearly, it is found that Q. is not positive definite or neg-

A N

= _Qc

ative definite. Therefore, we must further select g, such
that
Pe > p+ |62y + 4|

5. VSS Observer

In this section, we shall design a VSS observer as a
completely dual form to the VSS controller described in
section 3. It is assumed that the observer is of full-order
given by

E(t) = A&(t) + Bu(t) + Mi(e) + Mog(e) + Mupm(e) (14)

where &(¢) denotes the state of the observer and e(t)
2(t) — &(t) is estimation error. Here, M;(e) is the lin-
ear compensative term, M, (e) is the equivalent compen-
sative term and M,,,,(e) is the min-max compensative
term.

5.1 Linear observer

Assumption 3: The pair (C, A) is completely observ-
able. This implies that we can find a matrix K, € R"*™
such that all eigenvalues of the matrix A, = A~ K.C are
in the desired location in the open left half-plane.

Then we have, from the well-known Luenberger ob-
server, the linear compensative term:

Mi(e) = K.[y(t) - Ca(t)
= K,Ce(t) (15)

5.2 Equivalent compensative term
It is assumed that the system (1) and (2) with {(-) =
0 is estimated via an observer using M;(e) + Meq(e).
Assumption 4: There exist real symmetric positive
definite matrices (), and P., where P, is the unique solu-
tion to the algebraic Lyapunov equation:
ALPe + Pede = =Q. (16)
Then, we define the following switching suirface for
the estimation

5. = {e(t)|o.(t) £ G,e(t) = 0} (17)



N L
where G, = BT P.. Furthermore, it is assumed that there
exist £, Fy € RV such that

FC

=BTP, (18)

F,C =BTP,A, (19)

Defining Me,4(¢€) = BL.g(e), since in the sliding mode
a.(t) =0

Fo(t) = GyAee(t) — GyBLyy(e) = 0 (20)

Using (19) gives

Leg(e) = (G4 B) 1 FyCe(t) (21)
where (G B) is assumed to be nonsingular. Subsequently,
when using M;(e) 4+ Mc,(e), the equivalent error system

hecomes

é(1) = Ace(t) = BLeg(e)

1 B)7I G Ace(1)

T

={I - B( (22)

5.3 Min-mazx observer

It is here assumed that the system (1) and (2) with
C(+) # 01s estimated from an observer with M,,,,(e). The
niin-max compensative term M, (e) is given by [5]:

A/‘Imm (P)

w—e/}g for all e(t) & S.
TR cel %

Myum(e) € {Bye € R™|Ine|| € p.} for all e(t) € S,

where g, is to be determined. Using the observer con-
sisting of (15),(21)and (23), the estimation error equation
bhecomes

BF1 Ce

é(t) = Aqe(t) — BLey(e) [FCel

pe+ BC (24)
for e(t) ¢ S.. When defining the generalized Lyapunov
function as W, = %UZO’C} the sufficient condition for as-
suring the attractiveness of e(t) to the switching surface
S, 18
=old. =0l (G,é)
=0T (G,Ace — GyBLeyle)
FiCe

[|F1Cell

W,

- G,B pe +G,B¢)

Using (19),(21) and G, = BT P, in above equation gives

e

llo|

Taking into account the fact of section 3.3, we have

W, = —¢! (BT P,B)i—=p. + oo (BT P.B)(  (25)

2_Pe

o T (BT EeB)llollo

(26)

VV& < _’\min(BT P(B)“U€||
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Fig. 2 A VSS observer.
Hence, if
- ‘\m:xx(Bl ])5 H) -
Pe 2 T gLy P (X7

Awin (BT P B}

then S, is globally asymptotically attractive at every-
where.
Fig.2 shows the block diagram of the present V5SS

observer.

6. Examnple 2
To illustrate the design of VSS observer using an
equivalent compensative term, let us return to Example
1 but now with ("= {1 1].
In this case, the linear part of the system is com-

pletely observable. Letting K, = [k, kea]T, we have

1 — ke
—(1 + Aftg)

—ky
:le = —l\“,g
A necessary and sufficient condition that assures the sta-
bility of the matrix A, is that, in [4,~A| = A2+ (1 +k., +
koo ) A+ ko + ko, coefficients 14k +koy and ko 4k, have
the same sign and 1 + ki 4 ke2 > 0. Using BT P = 1
while maintaining the symmetry of P, yields

Pea = Pe3 = F1

Applying this result to the relation of BT P.A, = I

gives



—Filker +kea, ke + ko] = Fofl, 1]

30 that

Fy = —Fi(ke + ke2)
I i, = [1, 0.5]T and F} = 1, then Fy, = —1.5. Sub-
stituting these results into AZ‘Pe + P, A, = —Q, results
n

9
_ i<“Pa +1 3
Q.= |t ]

Since . must be positive definite, it is enough to choose

BX

The linear compensative term is then given by

that p.; = 1.5. Subsequently, we have

1
1

4 3

]>0‘ Qe:[3 3

M = [0-5] (y — &1 — @)

and the equivalent compensative terin is also given by

0
1

A"[rlq = BLeq == [ il [_15(y_ 1= j:'l)]

The equivalent linear error system matrix reduces to

|

The switching compensative term is given by

-1
1

0

[ B(C,B) CA, = [ 0

0

Mpm = [ 1

] Ssgn(y — &y — 2)

For the case without using the equivalent compen-
=ative term, we must further check the positive definite-
ness of (0., which satisfies the equation {5]:

(P.BBTP)A, + AT(P,BBTP,)
_ [—1.5 —1.5] a

-1.5 -1.5
Clearly, it is held that Q. > 0.

_Qe

7. Example 3

Next consider the same problem as in Example 2, but
with ¢ = [1 0]. This case also assures that the linear
part of the system is completely observable.

Computing BT P, = F1C, it follows that p,s = 0.
This means that the condition of P, > 0 does not hold.
Hence, the VSS observer based on the condition of strictly
positive realness can not be designed for this case,

This is a particular case when the sliding motion 1s
generated through the value of a single component of the
error states, rather than a linear combination of both com-
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ponents, as studied in Slotine et ol [8].

8. VSS Controller for the Case of
Incomplete State Information

In this section, assume that a() is not available to

construct the VS8 controller. Instead, we may use the

VSS observer described above. For such a case, the VSS
control input given by (3) is replaced by

w(ty &) 2wy (4 &) + tteg (1, 3) + o (1, 3)  (28)
The linear state feedback input becomes
w(l, &) = — K 2(t) (29)
The switching surface (6) 1s also exchanged by
5.2 {a))F.t) & Ka(t) = 0} (30)
Since o.(t) = 0 in the sliding mode, using (14) with
u(l, ) = (4, 2) + ueg (2, &) gives

Go(t) = RyA2(t) + K, Bug,(t, &) + K, K.Ce(t)
+ KN, B(G,B) ' FyCe(t) + Ky M,ym(e) = 0 (31)

Hence,

Ueg(t, #) = ~(K,B) P K,[A.2(1) + K. Ce(t)
+ B(G,B) P FoCe(t) + Mpn(e)] (32)

Furthermore, the min-max controller becoines

II7”7”(" ';.)
— 2 5. forall i(1) ¢ S.
fla.ll (33)

U € {B7. € R\l < p.} for all #(1) € S,

9. Conclusions

We have described a VSS observer-based sliding
mode control for continuous-time systems with uncertain
elements, the Euclidean norm of
unknown element is bounded by a known value. For a

nonlinear where
case of complete state information, by applying a strictly
positive realness, we first derived a sliding mode controller
consisting of three parts: a liner state feedback control,
an equivalent input and a min-max control. It was then
shown that the present attractiveness condition was sim-
pler than that for a case without using the concept of
equivalent input. We next designed a VSS observer as a
completely dual form to the sliding mode controller. Fi-
ually, we dealt with a case of incomplete state information
by applying the VSS observer.
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