• Title/Summary/Keyword: Sliding Coefficient

Search Result 436, Processing Time 0.027 seconds

Control Performance Comparison of Model-referenced and Map-based Control Method for Vehicle Lateral Stability Enhancement (차량 횡방향 안정성 향상을 위한 모델 참조 제어와 맵기반 제어 방법의 제어 성능 비교)

  • Yoon, Moonyoon;Baek, Seunghwan;Choi, Jungkwang;Boo, Kwangsuck;Kim, Heungseob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.253-259
    • /
    • 2014
  • This study proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. The performances of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with low friction coefficient. The simulation results show that map-based control provides better stability than model-referenced control.

A Study on the Mechanical Characteristics of High Tension Bolted Joints with Butt-Welded Joints (횡방향 맞대기 용접부를 가진 고장력볼트 마찰이음부의 역학적 특성에 관한 연구)

  • Chang, Dong Il;Kim, Hak Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.101-113
    • /
    • 1998
  • In this study, we research the influence of butt-welded joints in high tension bolted joints on the static and fatigue strength. As a results, if it's located inside or outside of the friction surface, the fatigue strength decrease, and the decrease of fatigue strength is greater in cases that the butt-welded joints exist outside of the friction surface. But the influence of butt-welded joint on the fatigue strength satisfies category B of the Specifications.

  • PDF

Study on the Frictional Properties of Nylons Synthesized by Varying Catalyst Content (촉매 함량 변화에 따라 합성된 나일론의 마찰 특성에 관한 연구)

  • Chung, Dae-Won;Kang, Suk-Choon
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.14-18
    • /
    • 2005
  • Nylons were synthesized by anionic polymerization of ${\varepsilon}$--caprolactam while varying the content of catalyst. Polymerization rates, molecular weights, mechanical properities and frictional properties of the nylons were investigated. As the ratio of catalyst to initiator was increased up to 1.0%, the polymerization rate, conversion and molecular weight were found to increase, and mechanical properties except impact strength were improved. Frictional properties were affected mainly by tensile strength and hardness. According to the study on the friction coefficient, product of stress (P) and velocity (V), PV limit, and abrasive wear rate, nylon synthesized at 1.0% of the ratio of catalyst to initiator showed the best performance for sliding machine elements.

The Effect of Abrasive particles on Brake Performance (자동차 제동특성에 미치는 연마제의 영향에 관한 연구)

  • Hong, Young-Suk;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.332-340
    • /
    • 2000
  • Friction properties of automotive brake pads containing different types of abrasivess were investigated. Five different abrasives, including o-quartz, magnesia, magnetite, alumina, zircon, were employed in this investigation and size effects of the abrasives on friction characteristics were also studied using 1, 50, 140$\mu\textrm{m}$ size zircon. Experimental results showed that the hardness and size of these abrasive particles were strongly related to friction behaviors and wear mechanisms. Harder and smaller abrasives showed higher friction coefficient and more wear. The surfaces of friction materials with different sizes of abrasives showed that two different modes of abrasion (two-body and three-body abrasion) appeared during sliding. Considering the above results, abrasive materials were thought to destroy transfer film and the extent of the destruction depends on the types and sizes of abrasive particles. A mechanism of the wear mode transition (two-body to three body abrasive motion) was suggested considering the binding energy and friction energy in terms of abrasive particle size.

  • PDF

Tribological characteristics of sputtered MoS$_2$films with Magnetron Sputtering Method in High Vacuum (Magnetron Sputtering법에 의해 증착한 MoS$_2$ 박막의 고진공하에서의 트라이볼로지적 특성)

  • 안찬욱;김석삼;이상로
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.406-413
    • /
    • 2000
  • The friction and wear behaviors of Magnetron Sputtered MoS$_2$films were investigated by using a pin on disk type tester which was designed and manufactured for this experiment. The experiment was conducted by using silicon nitride (Si$_3$N$_4$) as a pin material and Magnetron Sputtered MoS$_2$on bearing steel (STB2) as a disk material, under operating conditions that include different surface roughness (Polishing specimen, Grinding specimen)(2types), linear sliding velocities in the range of 22, 44, 66mm/sec (3types), normal loads vary from 9.8N, 19.6N, 29.4N(3types), corresponding to contact pressures of 1.9∼2.7GPa and atmospheric conditions of high vacuum( 1.3${\times}$10$\^$-4/Pa), medium vacuum( 1.3${\times}$10$\^$-l/Pa), ambient air(10$\^$5/Pa)(3types). We investigated fracture mechanism in magnetron sputtered MoS$_2$films with Magnetron Sputtering method in each experiment.

  • PDF

Predictive Study of Hysteretic Rubber Friction Based on Multiscale Analysis (멀티스케일 해석을 통한 히스테리시스 고무 마찰 예측 연구)

  • Nam, Seungkuk;Oh, Yumrak;Jeon, Seonghee
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.378-383
    • /
    • 2014
  • This study predicts the of the hysteretic friction of a rubber block sliding on an SMA asphalt road. The friction of filled rubber on a rough surface is primarily determined by two elements:the viscoelasticity of the rubber and the multi-scale perspective asperities of the road. The surface asperities of the substrate exert osillating forces on the rubber surface leading to energy dissipation via the internal friction of the rubber when rubber slides on a hard and rough substrate. This study defines the power spectra at different length scales by using a high-resolution surface profilometer, and uses rubber and road surface samples to conduct friction tests. I consider in detail the case when the substrate surface has a self affine fractal structure. The theory developed by Persson is applied to describe these tests through comparison with the hysteretic friction coefficient relevant to the energy dissipation of the viscoelastic rubber attributable to cyclic deformation. The results showed differences in the absolute values of predicted and measured friction, but with high correlation between these values. Hence, the friction prediction model is an appropriate tool for separating the effects of each factor. Therefore, this model will contribute to clearer understanding of the fundamental principles of rubber friction.

Tribological Properties of Carbon/PEEK Composites

  • Yoon, Sung-Won;Kim, Yun-Hae;Lee, Jin-Woo;Kim, Han-Bin;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.3
    • /
    • pp.142-146
    • /
    • 2013
  • In this study, the effect of Carbon/PEEK composites on the tribological properties has been investigated. Also, its validity has been tested in the capacity of alternative materials of the Ti-based materials used for artificial hip joint. Moreover, this work evaluated the mechanical properties according to the fiber ply orientation, along with the fractured surfaces of the carbon/PEEK composites. The composites with a unidirectional orientation had higher tribological properties than those with a multidirectional orientation. This was caused by the debonding between the carbon fiber and the PEEK, which was proportional to the contact area between the sliding surface and the carbon fiber. The friction test results showed that there were no significant differences in relation to the fiber ply orientation. However, the friction properties of the carbon/PEEK composites were higher than those of the carbon/epoxy composites. In addition, the results showed that a composite that slid in a direction normal to the prepreg lay-up direction had a smaller friction coefficient than one that slid in a direction parallel to the prepreg lay-up direction.

Feasibility Study of Friction Characteristics for Impact Analysis (충돌 해석 시 마찰 모델 적용을 위한 기초 마찰 시험 연구)

  • Lee, Kwang-Hee;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.112-116
    • /
    • 2021
  • Appropriate friction model usage is important for impact analysis because the relative motions between parts that are in contact for very short durations can vary greatly depending on the friction model. Vehicle seat components that have significant effects on impact analysis are also considered. This paper presents an experimental investigation of various material contact pairs to obtain the friction parameters of the Benson exponential friction model for impact simulation. The Coulomb friction model has limitations for impact analysis because of singularity at zero velocity. Metal/nonmetal materials are prepared, and friction tests are conducted for various sliding speeds, loads, and lubrication conditions. The obtained data are used in the friction model to implement finite element analysis. The parameters of the friction model are obtained by the curve-fitting method. The experimental results show that the friction coefficient with metal/nonmetal contact pairs is stable regardless of the working conditions. The friction model used in this study can also be applied for finite element analysis of the crash conditions, where the friction changes abruptly at the contact interface; the obtained friction parameters are also expected to be more accurate with more precise tests under different working conditions. These results can help improve the accuracy of the finite element analysis.

Bond behaviour at concrete-concrete interface with quantitative roughness tooth

  • Ayinde, Olawale O.;Wu, Erjun;Zhou, Guangdong
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.265-279
    • /
    • 2022
  • The roughness of substrate concrete interfaces before new concrete placement has a major effect on the interface bond behaviour. However, there are challenges associated with the consistency of the final roughness interface prepared using conventional roughness preparation methods which influences the interface bond performance. In this study, five quantitative interface roughness textures with different roughness tooth angles, depths, and tooth distribution were created to ensure consistency of interface roughness and to evaluate the bond behaviour at a precast and new concrete interface using the splitting tensile test, slant shear test, and double-shear test. In addition, smooth interface specimens and two separate the pitting interface roughness were also utilized. Obtained results indicate that the quantitative roughness has a very limited effect on the interface tensile bond strength if no extra micro-roughness or bonding agent is added at the interface. The roughness method however causes enhanced shear bond strength at the interface. Increased tooth depth improved both the tensile and shear bond strength of the interfaces, while the tooth distribution mainly influenced the shear bond strength. Major failure modes of the test specimens include interface failure, splitting cracks, and sliding failure, and are influenced by the tooth depth and tooth distribution. Furthermore, the interface properties were obtained and presented while a comparison between the different testing methods, in terms of bond strength, was performed.

Experimental and numerical study on aerodynamic characteristics of suspended monorail trains passing each other under crosswinds

  • Yulong Bao;Wanming Zhai;Chengbiao Cai;Shengyang Zhu;Yongle Li
    • Wind and Structures
    • /
    • v.37 no.5
    • /
    • pp.361-373
    • /
    • 2023
  • Suspended monorail trains (SMTs) are sensitive to crosswinds, and instantaneous aerodynamic characteristics of two SMTs passing each other under crosswinds are particularly complicated. In this study, a pressure measurement test is carried out on stationary train-bridge models arranged in several critical positions. In addition, a validated moving CFD model is developed with the dynamic and sliding mesh method to explore the realistic train movement effects. The time-varying aerodynamic forces and surface pressure distribution on, as well as the flow field around running trains and bridges during trains passing each other, are computed in detail to illustrate the shielding effect of the upstream train. The results reveal that when two trains begin to pass each other, the side force coefficient of the downstream train reduces significantly to negative values due to the wind shielding effect of the upstream train. The moving model successfully captures that airflow is separated on the middle line of the head car for the suspended monorail train, and the surrounding bluff double-beams can significantly affect the flow structures around the train. The wind shielding effect of the upstream train on the downstream train will weaken as the relative yaw angle decreases.