• Title/Summary/Keyword: Sliding Algorithm

Search Result 555, Processing Time 0.023 seconds

Vibration Control of Quarter Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller (퍼지이동 슬라이딩모드 제어기를 이용한 1/4차량의 ER현가장치 진동제어)

  • Sung, Kum-Gil;Cho, Jae-Wan;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.822-829
    • /
    • 2006
  • This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.

Multipath Search Algorithm based on Sliding Window (슬라이딩 윈도우를 이용한 다중 경로 탐색 알고리즘)

  • 유현규;권종현;전형구;홍대식;강창언
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.69-72
    • /
    • 2000
  • In CDMA systems, the performance of the typical multipath searcher degrades much according as the signal to noise ratio becomes low. In this paper, multipath searcher algorithm is proposed based on sliding window to overcome this drawback. In searcher systems, correlation values between incoming and local PN sequences are used to acquire multipath components. Therefore more accurate distributions of correlation values obtained through this proposed algorithm enables to get higher detection probability. In computer simulations, it is verified that proposed algorithm has better performances in Rayleigh fading channel and Gaussian channel.

  • PDF

A study on the trajectory control of SCARA robot using sliding mode (슬라이딩 모드를 이용한 SCARA 로보트의 궤적제어에 관한 연구)

  • 진상영;이민철;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1031-1035
    • /
    • 1993
  • In this paper, we suggest a new algorithm diminishing the chattering in sliding mode control by setting a dead-band along the switching line on the phase plane although nonlinear terms of an nonlinear system are regarded as disturbances and apply this algorithm to the trajectory control of SCARA robot By this algorithm, we can expect the high performance of the trajectory trajet of an industrial robot which needs a robust and simple algorithm.

  • PDF

The Design of Sliding Model Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.117-123
    • /
    • 2001
  • To improve control performance of a non-linear system, many other reserches have used the sliding model control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However, this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network. The perturbation estimator based on the fuzzy adaptive network generates the control input of compensating unmodeled dynamics terms and disturbance. And the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluation control performance of the proposed approach, tracking control simulation is carried is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

A Study on Adaptive-Sliding Mode Control of SCARA Robot (스카라로보트의 적응-슬라이딩모드 제어에 관한 연구)

  • 윤대식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.148-153
    • /
    • 1999
  • In this paper, it is proposed the adaptive-sliding mode control technique which is new approach to implement the robust control of industrial robot manipulator with external disturbances and parameter uncertainties. Over the past decade, the design of advanced control systems for industrial robotic manipulators has been a very active area of research and two major design categories have emerged. Sliding mode control is a well-known technique for robust control of uncertain nonlinear systems. The robustness of sliding model controllers can be shown in continuous time, but digital implementation may not preserve robustness properties because the sampling process limits the existence of a true sliding mode. Adaptive control algorithm is designed by using the principle of the model reference adaptive control method based upon the hyperstability theory. The proposed control scheme has a simple structure is computationally fast and does not require knowledge of the complex dynamic model or the parameter values of the manipulator or the payload. Simulation results how that the proposed method not only improves the performance of the system but also reduces the chattering problem of sliding mode control. Consequently, it is expected that the new adaptive sliding mode control algorithm will be suited for various practical applications of industrial robot control system.

  • PDF

Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems Using Fuzzy Models

  • Seo, Sam-Jun;Kim, Dong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1262-1266
    • /
    • 2003
  • Fuzzy sliding mode controller for a class of uncertain nonlinear dynamical systems is proposed and analyzed. The controller's construction and its analysis involve sliding modes. The proposed controller consists of two components. Sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum. The results show that both alleviation of chattering and performance are achieved.

  • PDF

An LMI-Based Sliding Mode Observer Design Method for Uncertain Time-Delay Systems (불확실한 시간 지연 시스템을 위한 LMI 기반 슬라이딩 모드 관측기 설계법)

  • Choi Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1018-1021
    • /
    • 2006
  • This paper presents an LMI-based method to design sliding mode observers for a class of uncertain time-delay systems. Using LMIs we derive an existence condition of a sliding mode observer guaranteeing a stable sliding motion. And we give explicit formulas of the observer gain matrices. Finally, we give a simple LMI-based design algorithm, togeter with a numerical design example.

Design of Robust, Optimal Controller using Sliding Mode (슬라이딩 모드를 이용한 견실 최적 제어기 설계)

  • Byun, Ji-Young;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.580-583
    • /
    • 2003
  • The general time optimal control law provides the optimal solution for a minimum time control problem. But in most real systems with disturbances and model uncertainties, the time optimal control law leads to chattering effect. This chattering effect can cause the system to be unstable. Therefore, we propose a robust optimal control algorithm for the nonlinear second order systems with model uncertainty. The proposed algorithm is combined with bang-bang control and sliding mode control. Thus the proposed algorithm has two state space regions to implement to control algorithm. In each region, the appropriate linear or nonlinear feedback control law is used satisfying the dynamic system equations. Simulation results show the superiority of the proposed controller in comparison with pure time optimal control(bang-bang control).

  • PDF

SPMSM Mechanical Parameter Estimation Using Sliding-Mode Observer and Adaptive Filter (슬라이딩 모드 관측기와 적응 필터를 이용한 SPMSM 기계 파라미터 추정)

  • Kim, Hyoung-Woo;Choi, Joon-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • We propose a mechanical parameter estimation algorithm for surface-mounted permanent magnet synchronous motors (SPMSMs) using a sliding-mode observer (SMO) and an adaptive filter. The SMO estimates system disturbances in real time, which contain the information on mechanical parameters. A desirable feature that distinguishes the proposed estimation algorithm from other existing mechanical parameter estimators is that the adaptive filter estimates electromagnetic torque to improve the estimation performance. Moreover, the SMO acts as a low-pass filter to suppress the chattering effect, which enables the smooth output signals of the SMO. We verify the mechanical parameter estimation performance for SPMSM by conducting extensive experiments for the proposed algorithm.

Network Coding-based Maximum Lifetime Algorithm for Sliding Window in WSNs

  • Sun, Baolin;Gui, Chao;Song, Ying;Chen, Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1298-1310
    • /
    • 2019
  • Network coding (NC) is a promising technology that can improve available bandwidth and packet throughput in wireless sensor networks (WSNs). Sliding window is an improved technology of NC, which is a supplement of TCP/IP technology and can improve data throughput and network lifetime on WSNs. This paper proposes a network coding-based maximum lifetime algorithm for sliding window in WSNs (NC-MLSW) which improves the throughput and network lifetime in WSN. The packets on the source node are sent on the WSNs. The intermediate node encodes the received original packet and forwards the newly encoded packet to the next node. Finally, the destination node decodes the received encoded data packet and recovers the original packet. The performance of the NC-MLSW algorithm is studied using NS2 simulation software and the network packet throughput, network lifetime and data packet loss rate were evaluated. The simulations experiment results show that the NC-MLSW algorithm can obviously improve the network packet throughput and network lifetime.