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1. INTRODUCTION 

 
Variable structure control systems constitute a class of 

nonlinear feedback control systems whose structure changes 
depending on the state of the system. Although, neither 
structure is necessarily stable, their combination results in a 
sliding mode, that is, the system trajectory slides along a  
sliding surface. Variable structure control can be applied very 
well in the presence of model uncertainties, parameter 
fluctuations and disturbances provided that the upper bounds 
of their absolute values are known. The sliding mode control 
is especially appropriate for the tracking control of robot 
manipulators and also for motors whose mechanical loads 
change over a wide range.[1] 

Despite the benefits of VSC control, this suffers from two 
major shortcomings. First, the insensitivity property of a VSC 
system is present only when the system is in the sliding mode. 
The second shortcoming is control chattering. To overcome 
the first disadvantage , that is to reduce the reaching time, the 
use of high gain control signal was suggested[2]. On the other 
hand, a time-varing switching surface was suggested in order 
to eliminate the reaching phase, where the initial tracking 
control errors were assumed to be zero[3]. However, this 
assumption rules out many practical situations in which the 
system initial conditions are located arbitrarily. 

The problem for chattering has been addressed by many 
researchers. In [3], the discontinuous control is approximated 
inside a boundary layer located around the switching surface. 
However, although chattering can be reduced, robustness and 
tracking accuracy are compromised. 

The fuzzy logic controller, based on Zadeh’s fuzzy set 
theory has firstly been developed by Mamdani and his 
coworkers about twenty years ago, and has successfully been 
applied to many commercial products and industrial 
systems.[4][5] The main advantages of fuzzy logic controller 
are it can control the complex ill-defined systems by 
converting the linguistic control strategy of operators’ 
experience or experts’ knowledge into an automatic control 
strategy without knowing the mathematical model of the 
controlled systems.  

However, at present there still have some problems in the 
design of fuzzy logic controllers. Control rules that are the 
most important factor in FLC are generally obtained from 
intuition and experience of the experts, and such rules 

represented by linguistic rule sets or fuzzy relation. But there 
is always something difficult to obtain from such control rules 
and this makes the design of the controller difficult and the 
response trajectory of the controlled system is unpredictable. 
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Recently, fuzzy logic control has emerged as a paradigm 
of intelligent control capable of dealing with complex and 
ill-defined system[6]. New results have been made recently to 
identify the connection between fuzzy logic and variable 
structure control[7,8,9]. It has been shown that fuzzy logic 
control is a general form of variable structure control. This 
connection has suggested the integration of the two control 
approaches in control system design applications[8,9,10]. 

In this paper, we will introduce a fuzzy sliding mode 
controller(FMSC) which is designed by the techniques of both 
fuzzy logic controller(FLC) and variable structure 
controller(VSC). In the conventional VSC, when the sliding 
mode occurs, the state trajectories of the control system will 
kept on a prespecified switching hyperplane. In other words, 
the controlled system has insensitive properties to 
uncertainties of the process. However, owing to the sampling 
action of digital implementation and delay of switch device, a 
realized VSC may have chattering. But in our design method 
the chattering phenomenon will be attenuated. 

This paper is organized as follows. Section 2 gives some 
background on fuzzy sliding mode control. Section 3 presents 
the new fuzzy sliding mode control algorithm, In section 4, an 
application of the above results to an inverted pendulum 
illustrated. Finally, section 5 presents some conclusions 

 
2. BACKGROUNS 

 
2.1 Basic concepts of VSC 
Let a nonlinear dynamic system be represented by the state 
equation: 

utxtxftx ),g( ),()( +=&                           (1) 
where  is the state vector of the system, 

 are vector fields,  is the control input to 
the system. The VSC design consists in achieving the 
following steps: 

nRx∈
nR×+Rgf :, Ru∈

1) Design a switching manifold S in the state space to 
represent a desired system dynamics, which is of 
lower order than the dimension of the given plant; S 
is defined by 
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2) Design a variable structure control 
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such that any state  out side the switching surface is 
driven to reach this surface in finite time, that is the 
condition  is satisfied in finite time. 

x

0)( =xs
To specify the reaching condition a Lyapunov function is 

used. Let the Lyapunov function candidate be defined as: 

 )(
2
1),( 2 xstxV =                               (4) 

where  is the switching surface and  is the state 
vector of the system. Then the reaching condition for 
existence of the sliding mode motion of the system under 
consideration is given as follows: 

)(xs nRx∈

SRxforxsxstxV n −∈<=       0)()(),( &&               (5) 
The control of the dynamics of a VSC system in the 

reaching mode may be made possible by specifying the 
dynamics of the switching function . More specifically, 
the dynamics of the switching function  are described 
by a differential equation of the form: 

)(xs
)(xs

0    )sgn()( >−= KsKxs&                          (6) 
Note that we no longer to verify the reaching condition 

because it is inherent in the differential equation of the 
function . By specifying the dynamics of the function 

, we can predetermine the speed with which the system 
state approaches the switching manifold.  

)(xs
)(xs

After choosing the dynamics of the reaching mode, we now 
determine the associated control law. Differentiating  
with respect to time along the trajectory of (1) gives 
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Solving (7) for the control law gives 
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where the existence of the inverse of the matrix 
1

)(
−







∂
∂ xg
x
s

is a necessary condition. 

2.2 Fuzzy Sets and Fuzzy Logic 
A fuzzy set is a generation of the classical notion of a set. 

Whilst the characteristic function of a classical set can take 
values of either 0 or 1, which means that an object either 
belongs to or does not belong to a given set, the characteristic 
function(called membership function in fuzzy set theory) of a 
fuzzy set can take on values in the interval [0, 1]. 
Approximate reasoning is one of the most important concepts 
of fuzzy logic. It represents inference rules whose premises 
contain fuzzy propositions, Unlike inference in classical logic, 
in its computation inference, approximation reasoning uses 
fuzzy set which represents the meaning of a collection of 
fuzzy propositions. For instance, let membership function 

 and  represent the meaning of a fuzzy proposition 
“ x is A ” and meaning of an if-than fuzzy rule “ x is A then y 
is B ”, respectively, where A and B are fuzzy sets. Then, one 
can computer the membership function representing the 
meaning of the conclusion “ y is B ”. Now consider a 

collection of L fuzzy if-then rules: 

Aµ Rµ

LlByAxRule lll  ,  1,   ,  is     then    is   if : )()()( L=        (9) 

where  and , , are fuzzy sets of the 
variable x, then the fuzzy set B representing y resulting from 
the firing of the fuzzy rules is given by []: 
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* µµµ           (10) 

To determine the corresponding crisp value of y, a 
defuzzification procedure is applied to the inferred fuzzy set B. 
One of the most used defuzzification scheme is the center-of 
–area method. Applying center-of-area method to (10) yields: 
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where  represents a crisp value for which the membership 
function reaches its maximum, l . 

ly

)( lBµ L , ,1 L=

2.3 Takagi-Sugeno-Kang fuzzy model 
 One can construct a Takagi-Sugeno-Kang fuzzy model if 

local description of the dynamical system to be controlled is 
available in the terms of linear models. 

rituBtxAtx ii  , 2, 1,           ,)(   )()( L& =+=          (12) 

where the state vector is , the control input is 

, and the matrices  and  are of appropriate 
dimensions. The above information is then fused with 
available IF-THEN rules where the ith rule can have the form 
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where , is the jth fuzzy set of the ith rule. 

Let  be the membership function of the fuzzy set 

and let 
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Then, given a pair ( ), the resulting fuzzy system 
model is inferred as the weighted average of the local models 
and has the form 
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where for  ri  , 2, 1, L=
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Tanaka showed that the fuzzy model (14) can also be used to 
model a class of feedforward neural networks, as well as to 
construct fuzzy neural controller 

This strategy of selecting the variable control gain K(t) has 
following advantages over choosing a fixed control gain K: 

 1) A large control gain is applied only when the 
system state is far away from the sliding mode. 3. FUZZY SLIDING MODE CONTROL 

2) When the system state is close to the sliding 
manifold, a small control gain used. 

3.1 Fuzzy sliding mode Control using fuzzy models 
In [12], Tanaka proposed a Lypunov-based method for 

constructing globally stabilizing state feedback controller for 
the fuzzy system model given (15) 

3 .3 Modification of the rules 
Control rules that are the most important factor in FLC are 

generally obtained from intuition and experience of the 
experts, and such rules represented by linguistic rule sets or 
fuzzy relation. But there is always something difficult to 
obtain from such control rules and this makes the design of the 
controller difficult. Here, a self-organizing fuzzy sliding mode 
control algorithm using gradient descent method is proposed. 
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we assume that 
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The learning algorithm is to modify the consequent 
parameter such that the system trajectory stays on the sliding 
manifold. If the sliding condition,  is, is satisfied, the 
switching function will converge to zero, leading to the 
desired dynamics. According to the sliding condition, the 
consequent parameters should be adjusted in the direction that 
minimizes the value . These consequent parameters are 
adjusted to reduced  means that the controller is tuned to 
satisfy the sliding condition and consequently have a sliding 
behavior. 

0<ss&

ss&
ss&

where and are known nonnegative constants. We 

further assume that the matrix  is asymptotically stable. If 
this is not the case, we break u into two parts 

and begin our design with such that 

the matrix is asymptotically stable. Then our goal is 
to construct a linear state feedback controller that would 

make the closed loop system globally asymptotically stable for 
arbitrary f and h that satisfy the norm bounds given by (16). 
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According to the gradient descent method, the parameters 
are updated from Theorem 1: Suppose that  is asymptotically stable and 

is the solution to the Lyapunov matrix equation 
for some . Suppose also that 

iA

=Q
0>= TPP

PAPA i
T
i =+ Q2− 0>TQ )(

)()(
tK
tstsK

j
j ∂

∂
Γ−=

&&                           (19) 

in which  is the learning gain. By the chain rule, (19) 
becomes 
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Therefore we have globally asymptotically stabilizes the uncertain system for 
arbitrary f and h that satisfy the norm bounds (16). 
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&                 (21) 3 .2 Control gain K 
In this section we present a solution to the sliding mode 

control design using concepts from fuzzy set theory. In the 
design of switching control , the control gain K has to be 
selected according to the following rules. At each instant time, 
t,  is the algebraic value of the switching function s. 
Then these rules are: 

su
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Substituting (18) into (21), we obtain the following learning 
law for consequent parameters : 
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In summary, the proposed sliding mode control algorithm 
using self learning fuzzy logic consists of following steps: 
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1) Design a switching manifold S in the state space 
represents desired system dynamics as in classical VSC. 
2) Compute the control law  equ

a) Stabilize if necessary. Calculate so that 
the matrix has its eigenvalues in the desired 
location. 

iA
Ai −

xKu 11 −=

1KBi
where SL, SM, SS and SZ are fuzzy sets of the variable 

),( txs . , , and  are different values of the 

control gain corresponding to a large, medium, small and zero 
gain value, respectively. 

LK MK SK ZK

b) Solve the Lyapunov equation for 

some . Choosing Q  maximizes the 

ratio 
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. 
Given the value ),( txs at the instant time, t, the value of the 

control gain K at the time t is inferred using the above four 
fuzzy if then rules following procedure. 

c) Construct the resulting equivalent control 
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3) Update the control gain using learning algorithm (22) jK

4) Compute the control law  su
 

We use membership function of the form 4. COMPUTER SIMULATIONS 
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We apply the stabilization algorithm given in the previous 
section to balance an inverted pendulum mounted on a cart. 
The equations of motion for the pendulum are 

The corresponding fuzzy system model is 
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where , because for all t. We then 
proceed to construct a stabilizing linear controller according to 
the algorithm given in the previous section. We first represent 
model (25) as 

2 ,1 , == iwiiα 1 21 =+ ww

where is the angle of the pendulum from the vertical line, 
is the angular velocity of the pendulum, is the control 

force applied to the cart, and is the magnitude of 
the acceleration due to gravity.  
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The uncertain elements of system model (26) satisfy the 
matching condition. Hence, we can take because 

 for all t whenever 
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desired eigenvalues of are . For this choice of 
desired eigenvalues we find . Solving 

the Lyapunov equation ( )  
yields 
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We find . Let . 
Then the equivalent control input is 
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Numerical values of the parameters are given in Table 1. 
The learning laws are given by Table 1 The parameters of the inverted pendulum 
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γ&         (26)  symbol Value 
Acceleration of gravity g  2/8.9 sm  

Mass of cart cm  1kg 
Mass of pole m  0.5kg 

Length of pole l  0.5m 

For traditional sliding mode control the control gain K was 
kept constant and equal to 5. For the proposed control 
algorithm, the membership functions of the fuzzy subsets SZ, 
SS, SM and SL are shown in Figure 2.  The control objective is to maintain and . In the 

design example we choose the switching surface given by 
01 =x 02 =x

The simulation results of the application of the proposed 
control design approach are depicted in Figure 3. The learning 
gain γ was 20. It is clear from the simulation results that the 
proposed control approach reduces the chattering while 
maintaining a very small tracking error. 

k

010)( 21 =+= xxxs                        (24) 
In order to find the equivalent control input we consider 
modeling equation (14) as our truth model; that is, we are 
confident that these equations adequately represent the 
behavior of the system to be controlled. We use the truth 
model in our computer simulations to evaluate the 
performance of the design. We design controllers using a 
design model, which can sometimes be obtained by 
simplifying the truth model. In our examples, we assume that, 
by using insight and experience we obtained the following two 
rules describing the plant dynamics: 

equ

 
5. CONCLUSIONS 

In this paper, fuzzy sliding mode controller for a 
class of uncertain nonlinear dynamical systems is 
proposed and analyzed. The controller’s construction 
and its analysis involve sliding modes. The proposed 
controller consists of two components. Sliding mode 
component is employed to eliminate the effects of 
disturbances, while a fuzzy model component equipped 
with an adaptation mechanism reduces modeling 
uncertainties by approximating model uncertainties. To 
demonstrate its performance, the proposed control 
algorithm is applied to an inverted pendulum. The 
results show that both alleviation of chattering and 
performance are achieved. 
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Fig.2 The membership functions of )(xs  
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Fig.3 Angular displacement of pole 
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