• Title/Summary/Keyword: Slag composition

Search Result 139, Processing Time 0.025 seconds

Microstructural Analysis of Slags using Raman Micro Spectroscope

  • Park, Su Kyoung;Kwon, In Cheol;Lee, Su Jeong;Huh, Il Kwon;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.35 no.2
    • /
    • pp.145-152
    • /
    • 2019
  • The metal-manufacturing method and smelting temperature of ancient metal-production processes have been studied by analyzing the principal elements and microstructures of slag. However, the microstructure of slag varies according to the solidification cooling rate and types and relative amounts of various oxides contained within the smelting materials. Hence, there is a need for accurate analysis methods that allow slag to be distinguished by more than its composition or microstructure. In this study, the microstructures of slag discharged as a result of smelting iron sands collected from Pohang and Gyeongju, as well as the slag excavated from the Ungyo site in Wanju, were analyzed by using metalloscopy, scanning election microscopy-energy dispersine X-ray spectroscopy(SEM-EDS) and wavelength dispersive X-ray fluorenscence(WD-XRF). Furthermore, the microcrystals were accurately characterized by performing Raman micro-spectroscopy, which is a technique that can be used to identify the microcrystals of slags. SEM-EDS analysis of Pohang slag indicated that its white polygonal crystals could be Magnetite; however, Raman micro-spectroscopy revealed that these crystals were actually $ulv{\ddot{o}}spinel$. Raman micro-spectroscopy and SEM-EDS were also used to verify that the coarse white dendritic structures observed in the Gyeongju-slag were $W{\ddot{u}}stites$. Additionally, the Wanju slag was observed to have a glassy matrix, which was confirmed by Raman micro-spectroscopy to be Augite. Thus, we have demonstrated that Raman micro-spectroscopy can accurately identify slag microcrystals, which are otherwise difficult to distinguish as solely based on their chemical composition and crystal morphology. Therefore, we conclude that it has excellent potential as a slag analysis technique.

The Properties of Steel Slag Aggregate Treated with Aging Process in Concrete (에이징 처리한 콘크리트용 제강슬래그 골재의 품질)

  • 문한영;유정훈;천승환;백우열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.105-108
    • /
    • 2001
  • In this paper, we evaluated the suitability of steel slag(is divided with electric arc furnace slag and converter slag) as concrete aggregate by measuring physical and chemical characteristics of it. The steel slag mainly contains SiO$_2$ and CaO as the chemical composition. The reaction with water and a little of free CaO in the slag causes slag's volume to expand. Therefore, we used several aging methods in order to decrease the characteristics of slag volume expansion. The physical properties of steel slag aggregate are researched and then the strength of concrete with the steel slag aggregate is measured.

  • PDF

A Study on the Utilization of Blast-Furnace Slag (II) (Slag-Ceramics with Natural Minerals) (고로슬라그의 이용에 관한 연구 (II) (천연원료를 이용한 Slag-Ceramics))

  • Chi, Ung-Up;Rhee, Jhun;Han, Ki-Suk;Lee, Jae-Rock
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.1
    • /
    • pp.3-12
    • /
    • 1981
  • A glass-ceramics based on blast-furnace slag, with some additives to the theoretical composition in order to control properties of mother glass and the heat treatment conditions, has been investigated. The raw materials in this study were blast-furnace slag, serpentine, feldspar and quartz as mother glass ingredients. Titanium dioxide and chromite were used as the nucleating agents. Batch compositions of the prepared glasses and ceraming conditions were found by trial and error method. The optimum conditions were confirmed by analyzing several measured physical properties such as density change during heat treatment, microhardness of slag-ceramics prepared, viscosity change of glass at heat treatment temperatures, nucleation density change, dilatometric properties, differential thermal analysis, identification of the grown crystal and crystal sizes. The batch composition feasible to prepare slag-ceramics was 40% of blast-furnace slag, 25% of serpentine, 18% of feldspar and 17% of silica sand. Three percent titanium dioxide and 1% chromite of the mother glass were added as nucleating agents. The ceraming conditions under which the slag-ceramics having considerably good properties can be developed found as: "The glass was heated at 75$0^{\circ}C$ for 2 hours for nucleation, and the temperature was raised up to 1, 00$0^{\circ}C$ with a rate of 0.75$^{\circ}C$/min for crystal growth.owth.

  • PDF

Properties of reduced and quenched converter slag

  • Ko, In-Yong;Ionescu Denisa;T. R. Meadowcroft
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.542-546
    • /
    • 2001
  • Converter slag has some compositional similarities to portland cement. But it has no hydration properties due to it's quite high concentrations of FeO(20-35%), MnO(4-6.5%). So it is needed to reduce the concentrations of iron and manganese of converter slag to use as cement additives by enhancing it's hydration properties. In this study, converter slag was modified it's composition by mixing of silica, alumina and quenched BF slag and reduced in induction furnace and quenched in running water. The hydraulic properties and structures of modified and quenched converter slag are significantly changed depend on the amount and kinds of additives. The addition of alumina up to 10% and BFQ slag up to 20% by weight on converter slag was effective to enhance the hydraulic properties of modified and quenched slag. The addition of reduced and quenched converter slag up to 20% by weight in replacement of portland cement in mixing of concrete mortar were shown higher compressive strength than 100% cement concrete mortar.

  • PDF

Superconducting magnetic separation of ground steel slag powder for recovery of resources

  • Kwon, H.W.;Kim, J.J.;Ha, D.W.;Choi, J.H.;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.22-25
    • /
    • 2017
  • Steel slag has been considered as an industrial waste. A huge amount of slag is produced as a byproduct and the steel slag usually has been dumped in a landfill site. However the steel slag contains valuable resources such as iron, copper, manganese, and magnesium. Superconducting magnetic separation has been applied on recovery of the valuable resources from the steel slag and this process also has intended to reduce the waste to be dumped. Cryo-cooled Nb-Ti superconducting magnet with 100 mm bore and 600 mm of height was used as the magnetic separator. The separating efficiency was evaluated in the function of magnetic field. A steel slag was ground and analyzed for the composition. Iron containing minerals were successfully concentrated from less iron containing portion. The separation efficiency was highly dependent on the particle size giving higher separating efficiency with finer particle. The magnetic field also effects on the separation ratio. Current study showed that an appropriate grinding of slag and magnetic separation lead to the recovery of metal resources from steel slag waste rather than dumping all of the volume.

Analysis of Slag Behavior near the Slag Tap in an Entrained Flow Coal Gasifier (분류층 석탄가스화기 하부 슬래그 탭 부근의 슬래그 거동 해석)

  • Chung, Jae-Hwa;Chi, Jun-Hwa;Lee, Joong-Won;Seo, Seok-Bin;Kim, Ki-Tae;Park, Ho-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.913-924
    • /
    • 2011
  • A steady-state analysis has been conducted to predict the behavior of the slag layer in the entrained-flow slagging coal gasifier. The analysis takes into consideration the composition dependent slag properties such as density, viscosity, heat capacity, thermal conductivity, and temperature of critical viscosity. The amount of added flux to the design coal and the variation of syngas temperature inside the gasifier have been adopted as calculation parameters. The predicted results are the local thickness of the molten and the solid slag layers, and the slag viscosity and the velocity distribution across the molten slag layer along the gasifier wall near the slag tap.

Effects of Processed Slag as Glassmaking Raw Material (on Soda-Lime Glass) (개질 고로 슬래그에 관한 연구 (유리 제조에 관한 연구))

  • 양중식
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.2
    • /
    • pp.112-118
    • /
    • 1981
  • A study was made on the processing of domestic blast furnace slag by flotation and chemical purification for the use of slag as a raw material in making soda lime glasses. Feasibility study has been made for the use of reprocessing slag as a source material for both coloring and chemical components (such as CaO, $Al_2O_3$, MgO and etc.) in the glass making process. Chemical composition of chemically purified slags ranges; $SiO_2$ 34.5~37.5, $Al_2O_3$, 16.2~14.1, $Fe_2O_3$ 0.33~0.14, CaO 34.5~38.8, MgO 4.0~5.2, NmO 0.16~0.39, $TiO_2$ 0.23~0.35, S 0.08~0.42, ignition loss 3.3~8.4 and others 0.48~0.51%. It was found that either amber or greenish color could be easily obtained with the addition of salg up to 24%, however the slag addition to glass batches much impaired the transmitancy of glass products, thus a glass made with 7% slag addition showed 82% in transmitancy value at 510 nm.

  • PDF

Study on the Reaction Characteristics of Self-reducing $Nb_2O_5$ Briquettes (자기 환원성 $Nb_2O_5$ 브리켓의 반응특성 연구)

  • Kim M. S.;You B. D.;Wi C. H.;Yun D. J.;Choi S. O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.333-336
    • /
    • 2005
  • The reduction behavior of $Nb_2O_5$ in aluminum containing self-reducing briquettes(SRNB) was investigated. The time required for slag/metal equilibrium was estimated as about 20 minutes from the addition of SRNB on to the surface of molten steel. The maximum yield of Nb was expected with the slag composition of $60\%CaO-40\%Al_2O_3$. When $CaCO_3$ was used as a flux, the oxidation loss of Al by $CO_2$ should be compensated, and the chemical equivalent ratio of Al to $Nb_2O_5$ of about 1.43 was required to maximize the yield of Nb.

  • PDF

Investigation on alkalinity of pore solution and microstructure of hardened cement-slag pastes in purified water

  • Hu, Ya-Ru;Zuo, Xiao-Bao;Li, Xiang-Nan;Jiang, Dong-Qi
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.507-515
    • /
    • 2021
  • To evaluate the influence of slag on the alkalinity of pore solution and microstructure of concrete, this paper performs a leaching experiment on hardened cement-slag pastes (HCSP) slice specimens with different slag content in purified water. The pH value of pore solution, average porosity, morphology, phase composition and Ca/Si of HCSP specimens in the leaching process are measured by solid-liquid extraction, saturated-dried weighing, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) and X-ray diffraction (XRD). Results shows that the addition of slag can mitigate an increase in porosity and a decrease in Ca/Si of HCSP in the leaching process. Besides, an appropriate slag content can improve the microstructure so as to obtain the optimum leaching resistance of HCSP, which can guarantee the suitable alkalinity of pore solution to prevent a premature corrosion of reinforced bar. The optimum slag content is 40% in HCSP with a water-binder ratio of 0.45, and an excessive slag causes a significant decrease in the alkalinity of pore solution, resulting in a loss of protection on reinforced bar in HCSP.

A Study on the Making of Slag Cement Clinker from Reduced and Modified Converter Slag (개질전로슬래그를 활용한 슬래그 시멘트 클링커 소성에 관한 연구)

  • Park Sun-Ku;Kim Young-Whan;Ko In-Yong
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.24-30
    • /
    • 2002
  • Reduced and modified converter slag was ball milled and sieved to -200/+325 mesh. CaO,$SiO_2$, $Fe_2$$O_3$ was added to slag powder and mixed to make it similar to the composition of normal portlant cement. The pellet made of this powder was heated from $1250^{\circ}C$ to $1450^{\circ}C$ for 15 min~45 min. Most feasible condition for making slag cement clinker is the heating more than 20 min at $1450^{\circ}C$. The compressive strength of the mortar made of this slag cement clinker was better than that of normal port-lant cement in long time curing.