Browse > Article
http://dx.doi.org/10.12989/acc.2021.12.6.507

Investigation on alkalinity of pore solution and microstructure of hardened cement-slag pastes in purified water  

Hu, Ya-Ru (Department of Civil Engineering, Nanjing University of Science and Technology)
Zuo, Xiao-Bao (Department of Civil Engineering, Nanjing University of Science and Technology)
Li, Xiang-Nan (Department of Civil Engineering, Nanjing University of Science and Technology)
Jiang, Dong-Qi (Department of Civil Engineering, Nanjing University of Science and Technology)
Publication Information
Advances in concrete construction / v.12, no.6, 2021 , pp. 507-515 More about this Journal
Abstract
To evaluate the influence of slag on the alkalinity of pore solution and microstructure of concrete, this paper performs a leaching experiment on hardened cement-slag pastes (HCSP) slice specimens with different slag content in purified water. The pH value of pore solution, average porosity, morphology, phase composition and Ca/Si of HCSP specimens in the leaching process are measured by solid-liquid extraction, saturated-dried weighing, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) and X-ray diffraction (XRD). Results shows that the addition of slag can mitigate an increase in porosity and a decrease in Ca/Si of HCSP in the leaching process. Besides, an appropriate slag content can improve the microstructure so as to obtain the optimum leaching resistance of HCSP, which can guarantee the suitable alkalinity of pore solution to prevent a premature corrosion of reinforced bar. The optimum slag content is 40% in HCSP with a water-binder ratio of 0.45, and an excessive slag causes a significant decrease in the alkalinity of pore solution, resulting in a loss of protection on reinforced bar in HCSP.
Keywords
alkalinity of pore solution; calcium leaching; hardened cement-slag paste (HCSP); microstructure, SEM-EDS; XRD;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Roh, H., Park, C. and Moon, D.Y. (2017), "Experimental investigation of the effects of concrete alkalinity on tensile properties of preheated structural GFRP rebar", Adv. Mater. Sci. Eng., 2017, 6327848. http://doi.org/10.1155/2017/6327848.   DOI
2 Awoyera, P.O., Dawson, A.R., Thom, N.H. and Akinmusuru, J.O. (2017), "Suitability of mortars produced using laterite and ceramic wastes: Mechanical and microscale analysis", Constr. Build. Mater., 148, 195-203. http://doi.org/10.1016/j.conbuildmat.2017.05.031.   DOI
3 Cherif, R., Hamami, A. and At-Mokhtar, A. (2020), "Effects of leaching and chloride migration on the microstructure and pore solution of blended cement pastes during a migration test", Constr. Build. Mater., 240, 117934. http://doi.org/10.1016/j.conbuildmat.2019.117934.   DOI
4 Ping, D.A., Zsa, B., Wei, C.A. and Cs, C. (2013), "Efficiency of mineral admixtures in concrete: Microstructure, compressive strength and stability of hydrate phases", Appl. Clay Sci., 83, 115-121. http://doi.org/10.1016/j.clay.2013.08.021.   DOI
5 GB 175 (2007), Chinese National Standard for Common Portland Cement, Standardization Administration of China, Beijing, China.
6 Saeki, T. and M. and Monteiro, P.J. (2005), "A model to predict the amount of calcium hydroxide in concrete containing mineral admixtures", Cement. Concrete. Res., 35(10), 1914-1921. http://doi.org/10.1016/j.cemconres.2004.11.018.   DOI
7 Tang, Y.J., Zuo, X.B., He, S.L., Ayinde, O. and Yin, G.J. (2016), "Influence of slag content and water-binder ratio on leaching behavior of cement pastes", Constr. Build. Mater., 129, 61-69. http://doi.org/10.1016/j.conbuildmat.2016.11.003.   DOI
8 Yu, X., Chen, J., Xu, Q. and Zhou, Z. (2018), "Research on the influence factors of thermal cracking in mass concrete by model experiments", KSCE. J. Civ. Eng., 22(8), 2906-2915. http://doi.org/10.1007/s12205-017-2711-2.   DOI
9 Zuo, X.B., Jiang, K., Feng, Y.X., Tang, Y.J. and Sun, X.H. (2017), "Analysis on depassivation process and chloride ion threshold of passive film on surface of ductile iron in simulated pore solution", J. Southeast U. Nat. Sci. Ed., 47, 392-396. (in Chinese). http://doi.org/10.3969/j.issn.1001-0505.2017.02.031.   DOI
10 Rafieizonooz, M., Mirza, J., Salim, M.R., Hussin, M.W. and Khankhaje, E. (2016), "Investigation of coal bottom ash and fly ash in concreteas replacement for sand and cement", Constr. Build. Mater., 116, 15-24. http://doi.org/10.1016/j.conbuildmat.2016.04.080.   DOI
11 Pu, Q., Yao, Y., Wang, L., Shi, X.X., Luo, J.J. and Xie, Y.F. (2017), "The investigation of pH threshold value on the corrosion of steel reinforcement in concrete", Comput. Concrete, 19(3), 257-262. http://doi.org/10.12989/cac.2017.19.3.257.   DOI
12 Mohamed, O.A. (2019), "A review of durability and strength characteristics of alkali-activated slag concrete", Mater., 12(8), 1198. https://doi.org/10.3390/ma12081198.   DOI
13 Wang, Y., Shui, Z., Sun, T., Huang, Y. and Wang, G. (2018), "Effect of fly ash, sinking beads and metakaolin on the workability, strength, free shrinkage and chloride resistance of concretes: A comparative study", Arab. J. Sci. Eng., 43(10), 5243-5254. http://doi.org/10.1007/s13369-018-3068-7.   DOI
14 Jain, J. and Neithalath, N. (2009), "Analysis of calcium leaching behavior of plain and modified cementpastes in pure water", Cement Concrete Compos., 31(3), 176-185. http://doi.org10.1016/j.cemconcomp.2009.01.003.   DOI
15 Li, X., Grasley, Z.C., Garboczi, E.J. and Bullard, J.W. (2017), "Simulation of the influence of intrinsic C-S-H aging on time-dependent relaxation of hydrating cement paste", Constr. Build. Mater., 157, 1024-1031. http://doi.org/10.1016/j.conbuildmat.2017.09.178.   DOI
16 Li, X. and Yan, P. (2010), "Influence of fly ash content on alkalinity of pore solution and microstructure of cement pastes", J. Build. Eng., 13(6), 787-791. http://doi.org/10.3969/j.issn.1007-9629.2010.06.017.   DOI
17 Liu, R.Y., Chi, Y., Chen, S.Y., Jiang, Q.H., Meng, X.Y., Wu, K. and Li, S.J. (2020), "Influence of pore structure characteristics on the mechanical and durability behavior of pervious concrete material based on image analysis", Int. J. Concrete Struct. Mater., 14(1). http://doi.org/10.1186/s40069-020-00404-1.   DOI
18 Majhi, R.K., Nayak, A.N. and Mukharjee, B.B. (2020), "Characterization of lime activated recycled aggregate concrete with high-volume ground granulated blast furnace slag", Constr. Build. Mater., 259, 119882. http://doi.org/10.1016/j.conbuildmat.2020.119882.   DOI
19 Melchers, R.E. and Chaves, I.A. (2020), "Durability of reinforced concrete bridges in marine environments", Struct. Infrastruct. Eng., 16(1), 169-180. http://doi.org/10.1080/15732479.2019.1604769.   DOI
20 Proske, T., Rezvani, M., Palm, S., Muller, C. and Graubner, C.A. (2018), "Concretes made of efficient multi-composite cements with slag and limestone", Cement Concrete Compos., 89, 107-119. http://doi.org/10.1016/j.cemconcomp.2018.02.012.   DOI
21 Ramakrishnan, K., Pugazhmani, G., Sripragadeesh, R., Muthu, D. and Venkatasubramanian, C. (2017), "Experimental study on the mechanical and durability properties of concrete with waste glass powder and ground granulated blast furnace slag as supple mentary cementitious materials", Constr. Build. Mater., 156, 739-749. http://doi.org/10.1016/j.conbuildmat.2017.08.183.   DOI
22 Choi, Y.S., Kim, J.G. and Lee, K.M. (2006), "Corrosion behavior of steel bar embedded in fly ash concrete", Corros. Sci., 48(7), 1733-1745. http://doi.org/10.1016/j.corsci.2005.05.019.   DOI
23 Alonso, C., Castellote, M., Llorente, I. and Andrade, C. (2006), "Ground water leaching resistance of high and ultra high performance concretes in relation to the testing convection regime", Cement Concrete Res., 36(9), 1583-1594. http://doi.org/10.1016/j.cemconres.2006.04.004.   DOI
24 Awoyera, P.O., Akinmusuru, J.O. and Dawson, A.R. (2018), "Microstructural characteristics, porosity and strength development in ceramic-laterized concrete", Cement Concrete Compos., 86, 224-237. http://doi.org/10.1016/j.cemconcomp.2017.11.017.   DOI
25 Choi, Y.S., Choi, S.Y., Kim, I.S. and Yang, E.I. (2018), "Experimental study on the structural behaviour of calcium-leaching damaged concrete members", Mag. Concrete Res., 70(21), 1102-1117. http://doi.org/10.1680/jmacr.17.00297.   DOI
26 Jiang, W.G., Li, X.G., Lv, Y., Jiang, D.B. and He, C.H. (2020), "Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica", Constr. Build. Mater., 238, 117683. http://doi.org/10.1016/j.conbuildmat.2019.117683.   DOI
27 Majhi, R.K. and Nayak, A.N. (2020), "Production of sustainable concrete utilising high-volume blast furnace slag and recycled aggregate with lime activator", J. Clean. Prod., 255, 120188. http://doi.org/10.1016/j.jclepro.2020.120188.   DOI
28 Rashad, A.M. (2018), "An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete", Constr. Build. Mater., 187, 89-117. https://doi.org/10.1016/j.conbuildmat.2018.07.150.   DOI
29 Mehta, P. and Saloni, A. (2019), "Effect of ultra-fine slag on mechanical and permeability properties of metakaolin-based sustainable geopolymer concrete", Adv. Concrete Constr., 7(4), 231-239. https://doi.org/10.12989/acc.2019.7.4.231.   DOI
30 Bellifa, S. and Boumechra, N. (2019), "Effects of calcium leaching on the physical and mechanical properties of aerial lime-cement mortars", J. Eng. Des., 17(3), 649-66. http://doi.org/10.1108/JEDT-11-2018-0199.   DOI
31 Hu, H.H., Zuo, X.B., Cui, D. and Tang, Y.J. (2019), "Experimental study on leaching-abrasion behavior of concrete in flowing solution with low velocity", Constr. Build. Mater., 224, 762-772. http://doi.org/10.1016/j.conbuildmat.2019.07.125.   DOI
32 Figueira, R.B., Sadovski, A., Melo, A.P. and Pereira, E.V. (2017), "Chloride threshold value to initiate reinforcement corrosion in simulated concrete pore solutions: The influence of surface finishing and pH", Constr. Build. Mater., 141, 183-200. http://doi.org/10.1016/j.conbuildmat.2017.03.004.   DOI
33 Gunasekara, C., Zhou, Z., Law, D.W., Sofi, M. and Mendis, P. (2020), "Microstructure and strength development of quaternary blend high-volume fly ash concrete", J. Mater. Sci., 55(15), 6441-6456. http://doi.org/10.1007/s10853-020-03864473-1.   DOI
34 GB/T 203 (2008), Chinese National Standard for Granulated blastfurnace slag used for cement production, Standardization Administration of China, Beijing, China.
35 Sahani, A.K., Samanta, A.K. and Roy, D. (2019), "Influence of mineral by-products on compressive strength and microstructure of concrete at high temperature", Adv. Concrete Constr., 7(4), 263-275. http://doi.org/10.12989/acc.2019.7.4.263.   DOI
36 Jia, Y., Bian, H.B., Xie, S.Y., Burlion, N. and Shao, J.F. (2017), "A numerical study of mechanical behavior of a cement paste under mechanical loading and chemical leaching", Int. J. Num. Anal. Meth., 41(18), 1848-1869. http://doi.org/10.1002/nag.2703.   DOI
37 Popov, V., Popov, D. and Davidenko, A. (2018), "Complex characteristic for forecasting durability of hydraulic concrete", MATEC Web Conf., 196, 04007. https://doi.org/10.1051/matecconf/201819604007.
38 Rao, M.J., Wei, J.P., Gao, Z.Y., Zhou, W., Li, Q.L. and Liu, S.H. (2016), "Study on strength and microstructure of cement-based materials containing combination mineral admixtures", Adv. Mater. Sci. Eng., 2016, 7243670. http://doi.org/10.1155/2016/7243670.   DOI
39 Majhi, R.K. and Nayak, A.N. (2019), "Bond, durability and microstructural characteristics of ground granulated blast furnace slag based recycled aggregate concrete", Constr. Build. Mater., 212, 578-595. https://doi.org/10.1016/j.conbuildmat.2019.04.017.   DOI
40 Savija, B., Zhang, H. and Schlangen, E. (2020), "Micromechanical testing and modelling of blast furnace slag cement pastes", Constr. Build. Mater., 239, 117841. http://doi.org/10.1016/j.conbuildmat.2019.117841.   DOI
41 Wang, W., Chen, H., Li, X. and Zhu, Z. (2017), "Corrosion behavior of steel bars immersed in simulated pore solutions of alkali-activated slag mortar", Constr. Build. Mater., 143, 289-297. http://doi.org/10.1016/j.conbuildmat.2017.03.132.   DOI
42 Wang, X., Xu, K., Li, Y. and Guo, S. (2018), "Dissolution and leaching mechanisms of calcium ions in cement based materials", Constr. Build. Mater., 180, 103-108. http://doi.org/10.1016/j.conbuildmat.2018.05.225.   DOI
43 Jin, W. and Wu, W. (2010), "Study on wireless sensing for monitoring the corrosion of reinforcement in concrete structures", Meas., 43(3), 375-380. http://doi.org/10.1016/j.measurement.2009.12.003.   DOI
44 Wang, X.Y. and Lee, H.S. (2014), "Prediction of compressive strength of slag concrete using a blended cement hydration model", Comput. Concrete, 14(3), 247-262. http://doi.org/10.12989/cac.2014.14.3.247.   DOI
45 Patel, R.A., Perko, J., Jacques, D., Schutter, G.D., Ye, G. and Breugel, K.V. (2018), "A three-dimensional lattice Boltzmann method based reactive transport model to simulate changes in cement paste microstructure due to calcium leaching", Constr. Build. Mater., 166, 158-170. http://doi.org/10.1016/j.conbuildmat.2018.01.114.   DOI
46 Razak, H.A. and Sajedi, F. (2011), "The effect of heat treatment on the compressive strength of cement-slag mortars", Mater. Des., 32(8-9), 4618-4628. http://doi.org/10.1016/j.matdes.2011.04.038.   DOI