• 제목/요약/키워드: Skew symmetric matrix

검색결과 18건 처리시간 0.028초

ON SKEW SYMMETRIC OPERATORS WITH EIGENVALUES

  • ZHU, SEN
    • 대한수학회지
    • /
    • 제52권6호
    • /
    • pp.1271-1286
    • /
    • 2015
  • An operator T on a complex Hilbert space H is called skew symmetric if T can be represented as a skew symmetric matrix relative to some orthonormal basis for H. In this paper, we study skew symmetric operators with eigenvalues. First, we provide an upper-triangular operator matrix representation for skew symmetric operators with nonzero eigenvalues. On the other hand, we give a description of certain skew symmetric triangular operators, which is based on the geometric relationship between eigenvectors.

THE RIESZ DECOMPOSITION THEOREM FOR SKEW SYMMETRIC OPERATORS

  • Zhu, Sen;Zhao, Jiayin
    • 대한수학회지
    • /
    • 제52권2호
    • /
    • pp.403-416
    • /
    • 2015
  • An operator T on a complex Hilbert space $\mathcal{H}$ is called skew symmetric if T can be represented as a skew symmetric matrix relative to some orthonormal basis for $\mathcal{H}$. In this note, we explore the structure of skew symmetric operators with disconnected spectra. Using the classical Riesz decomposition theorem, we give a decomposition of certain skew symmetric operators with disconnected spectra. Several corollaries and illustrating examples are provided.

FINDING THE SKEW-SYMMETRIC SOLVENT TO A QUADRATIC MATRIX EQUATION

  • Han, Yin-Huan;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • 제28권5호
    • /
    • pp.587-595
    • /
    • 2012
  • In this paper we consider the quadratic matrix equation which can be defined be $$Q(X)=AX^2+BX+C=0$$, where X is a $n{\times}n$ unknown real matrix; A,B and C are $n{\times}n$ given matrices with real elements. Newton's method is considered to find the skew-symmetric solvent of the nonlinear matrix equations Q(X). We also show that the method converges the skew-symmetric solvent even if the Fr$\acute{e}$chet derivative is singular. Finally, we give some numerical examples.

SKEW-SYMMETRIC SOLVENT FOR SOLVING A POLYNOMIAL EIGENVALUE PROBLEM

  • Han, Yin-Huan;Kim, Hyun-Min
    • 충청수학회지
    • /
    • 제26권2호
    • /
    • pp.275-285
    • /
    • 2013
  • In this paper a nonlinear matrix equation is considered which has the form $$P(X)=A_0X^m+A_1X^{m-1}+{\cdots}+A_{m-1}X+A_m=0$$ where X is an $n{\times}n$ unknown real matrix and $A_m$, $A_{m-1}$, ${\cdots}$, $A_0$ are $n{\times}n$ matrices with real elements. Newtons method is applied to find the skew-symmetric solvent of the matrix polynomial P(X). We also suggest an algorithm which converges the skew-symmetric solvent even if the Fr$\acute{e}$echet derivative of P(X) is singular.

EQUIVALENCE BETWEEN SYMMETRIC DUAL PROGRAM AND MATRIX GAME

  • Kim, Moon-Hee
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.505-511
    • /
    • 2007
  • Recently, the equivalent relations between a symmetric dual problem and a matrix game B(x, y) were given in [6: D.S. Kim and K. Noh, J. Math. Anal. Appl. 298(2004), 1-13]. Using more simpler form of B(x, y) than one in [6], we establish the equivalence relations between a symmetric dual problem and a matrix game, and then give a numerical example illustrating our equivalence results.

A GENERALIZATION OF LOCAL SYMMETRIC AND SKEW-SYMMETRIC SPLITTING ITERATION METHODS FOR GENERALIZED SADDLE POINT PROBLEMS

  • Li, Jian-Lei;Luo, Dang;Zhang, Zhi-Jiang
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1167-1178
    • /
    • 2011
  • In this paper, we further investigate the local Hermitian and skew-Hermitian splitting (LHSS) iteration method and the modified LHSS (MLHSS) iteration method for solving generalized nonsymmetric saddle point problems with nonzero (2,2) blocks. When A is non-symmetric positive definite, the convergence conditions are obtained, which generalize some results of Jiang and Cao [M.-Q. Jiang and Y. Cao, On local Hermitian and Skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 2009(231): 973-982] for the generalized saddle point problems to generalized nonsymmetric saddle point problems with nonzero (2,2) blocks. Numerical experiments show the effectiveness of the iterative methods.

AHP에서 왜대칭행렬의 고유분해를 이용한 중요도 추정법의 제안 (An Estimating Method for Priority Vector in AHP, Using the Eigen-Decomposition of a Skew-Symmetric Matrix)

  • 이광진
    • 응용통계연구
    • /
    • 제17권1호
    • /
    • pp.119-134
    • /
    • 2004
  • AHP기법에서는 의사결정 요소들의 중요도를 추정함에 있어 통상 쌍대비교행렬 그 자체에 고유벡터법 또는 대수최소제곱법을 적용한다. 본 연구에서는 왜대칭행렬의 고유분해를 통해 쌍대비교행렬을 조정한 후 조정된 쌍대비교행렬에 대해 고유벡터법 또는 대수최소제곱법을 적용하는 중요도 추정법을 제안한다. 그리고 이 추정법이 가지는 여러 가지 이점과 의미를 이론적 근거와 실제 사용 예를 통해 보이고자 한다. 본 연구결과는 불일치성이 높은 쌍대비교행렬이 주어진 경우 불일치성을 줄이는데 특히 유용하게 활용될 수 있을 것이다.

THE EXTREMAL RANKS AND INERTIAS OF THE LEAST SQUARES SOLUTIONS TO MATRIX EQUATION AX = B SUBJECT TO HERMITIAN CONSTRAINT

  • Dai, Lifang;Liang, Maolin
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.545-558
    • /
    • 2013
  • In this paper, the formulas for calculating the extremal ranks and inertias of the Hermitian least squares solutions to matrix equation AX = B are established. In particular, the necessary and sufficient conditions for the existences of the positive and nonnegative definite solutions to this matrix equation are given. Meanwhile, the least squares problem of the above matrix equation with Hermitian R-symmetric and R-skew symmetric constraints are also investigated.

A SIMPLE AUGMENTED JACOBI METHOD FOR HERMITIAN AND SKEW-HERMITIAN MATRICES

  • Min, Cho-Hong;Lee, Soo-Joon;Kim, Se-Goo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제18권3호
    • /
    • pp.185-199
    • /
    • 2011
  • In this paper, we present a new extended Jacobi method for computing eigenvalues and eigenvectors of Hermitian matrices which does not use any complex arithmetics. This method can be readily applied to skew-Hermitian and real skew-symmetric matrices as well. An example illustrating its computational efficiency is given.

RELIABILITY OF NUMERICAL SOLUTIONS OF THE G-EULER PROCESS

  • YU, DONG WON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제26권1호
    • /
    • pp.49-66
    • /
    • 2022
  • The G-Euler process has been proposed to overcome the difficulties of the calculation of the exponential function of the Jacobian. It is an explicit method that uses the exponential function of the scalar skew-symmetric matrix. We define the moving shapes of true solutions and the moving shapes of numerical solutions. It is discussed whether the moving shape of the numerical solution matches the moving shape of the true solution. The match rates of these two kinds of moving shapes are sequentially calculated by the G-Euler process without using the true solution. It is shown that the closer the minimum match rate is to 100%, the more closely the numerical solutions follow the true solutions to the end. The minimum match rate indicates the reliability of the numerical solution calculated by the G-Euler process. The graphs of the Lorenz system in Perko [1] are different from those drawn by the G-Euler process. By the way, there is no basis for claiming that the Perko's graphs are reliable.