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SKEW-SYMMETRIC SOLVENT FOR SOLVING A
POLYNOMIAL EIGENVALUE PROBLEM

YIN-HUAN HAN* AND HYUN-MIN Kim**

ABSTRACT. In this paper a nonlinear matrix equation is considered
which has the form

P(X)=Ao X"+ A X" 4. 4 A, 1 X+ A, =0,

where X is an n X n unknown real matrix and A, Am—1, ..., Ao
are n X n matrices with real elements. Newtons method is applied
to find the skew-symmetric solvent of the matrix polynomial P(X).
We also suggest an algorithm which converges the skew-symmetric
solvent even if the Fréchet derivative of P(X) is singular.

1. Introduction

For solving an m-th order ordinary differential equation which has a
form

dm a1 d
Ag—z(t) + A )+ + Ap_1—x(t) + Apx(t) =0,
odtmx( )+ ldtm—lx( )+ 4 ldtx( )+ Apnx(t)
where A,,, Am_1, ..., Ag are n X n real matrices, we need to consider

the polynomial eigenvalue problem
(1.1) P\)v=(A\"Ag+\""TA; + -+ My + Ao = 0.

For solving the problem (1.1) we may consider the matrix equation

(1.2) P(X)=AgX™" + A4X™ 4 4 A, 1 X+ A, =0
If m = 2 the matrix equation (1.1) can be rewritten by
(1.3) QM\)v = (A2Ag 4+ MA; + Ax)v =0,

Received October 11, 2013; Accepted April 04, 2013.

2010 Mathematics Subject Classification: Primary 65F30, 65H10.

Key words and phrases: matrix polynomial, polynomial eigenvalue problem, sol-
vent, Newton’s method, symmetric, skew symmetric.

*This research was supported by scientific research foundation of Qingdao Uni-
versity of Science and Technology.



276 Yin-Huan Han and Hyun-Min Kim

my

L3l

1

FIGURE 1. An n degree of freedom damped mass-spring
system. [9]

which arise from a freedom damped mass-spring system [2]. Figure 1
shows a connected damped mass-spring system. The i-th mass of weight
m; is connected to the (i 4+ 1)-th mass by a spring with constant k; and
damper with constant d;, and ground by a spring with constant x; and
damper constant ;.

Mehrmann and Watkins [6] showed that When Ag = A, 4; = —A],
Ay = AT in the quadratic eigenvalue problem (1.3), it has a Hamilton-
ian eigenstructure. An application of finding skew-symmetric solvent
of matrix polynomial comes from the polynomial eigenvalue problem
(1.1), since any skew-symmetric matrix has a pair of purely imaginary
eigenvalues [4], [7]. In this paper we suggest an algorithm for solving
skew-symmetric solvent of matrix polynomial.

2. Newton’s methods for nonlinear matrix equation

From the Fréchet derivative in Newton’s method of the matrix poly-
nomial (1.2), it is necessary to find the solution H € C™*" of the equa-
tion

(2.1) Px(H)=)Y |(> Axm ) ) gxi—1 = —P(X).
=1 n=0
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REMARK 2.1. Recall that Px is regular if and only if

inf ||Px > 0.
Jnt | [Px()]

Kratz and Stickel [5] used the Schur algorithm to solve (2.1). For a
given X € C™"*™ compute the Schur decomposition of X

(2.2) Q' XQ=U

where @ is unitary and U is upper triangular. Then, substituting (2.2)
into (2.1), the system is transformed to

(2.3) Z ZA X)) gyt = F

=1 ©n=0

where H' = HQ and F = —P(X)Q. Taking the vec operator both sides
of (2.3) makes a linear system such that

(2.4) Fvec(H') = vec(F)

where the matrix F € C**" is

(2.5) F=Y"[(Uh) Z A, X ()
i=1 pu=0

Seo and Kim [8] defined FNZ] =", [Ui—l]ji (ZZL:_f AMXm—(!“ri)) to

reduce the system size of the equation (2.4) to n x n, then F in (2.5) is
represented by

Fp
(2.6) B Fy1 Fy O

If we suppose that the matrices FA’; are nonsingular, then using the
block forward substitution, the equation (2.4) can be changed to n linear
systems with size n X n such that

R} =F f1
R, =Fy (f2—F21h)

h;L == an_ (fn - Fanhll - n,n—lhzfl)a
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where h; and f; are the ith columns of H' and F', respectively.

3. Skew-symmetric solvents of the matrix polynomial P(X)

Here, we consider an algorithm to compute skew-symmetric solutions
of the g-th Newton iteration (2.1).
ALGORITHM 3.1.

1. Input n x n real matrices Ay, A1, - -+ , Ay, and skew-symmetric ma-
trix X, € R™*™.
2. Choose a skew-symmetric starting matrix Hg, € R™*".

m m-—i
3. k=0; Ro=—P(Xy) — (Y > AX W H, X7
i=1 pu=0
. T
m m—1 ) ] T
Zo=_ | Do AuXy U] Ro (X071
i=1 \ pu=0
1
Py =5(Z - zd)
4. while R, # 0
| R I?
How = Hae gy
m m—i ' .
Ry = —P(Xg)— [ DY A~ H, X
i=1 pu=0
, T
m m—1 ) ) T
Zir =30 (S a0 ) w0
i=1 \ pu=0
1 tr (Zp1Pr)
Py = §(Zk+1 —Zh )+ W e

end

REMARK 3.2. The matrices P, and H,, are skew-symmetric in Algo-
rithm 3.1.

By Algorithm 3.1, we can obtain some properties which are useful for
the proof of our convergence theory.

LEMMA 3.3. Let H, be a skew-symmetric solution of the g-th Newton
iteration (2.1), then

(3.1) tr [P (Hy — Hy)] = |Ri||®, for k=0,1,---.
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Proof. When k = 0, we obtain
tr [Py (Hy — Hgy)]

= [ ZO - ZO (Hq - qu)]
= tr[Zy (Hy— qu )]
T T
- Z AMX’" W) | Ry (xg ) ! (Hq — Hy)
=1 ©n=0
= {R ZZ A X (Hy — Hy) XD 1”

= tr {ROT —P(X,) - (ZZAM)(;”W”)H(,OX;l)l }
=1 pu=0

= || Roll?,

by Algorithm 3.1.
We assume that (3.1) holds for k =, then

tr [Plil (H H‘Il+1)]

1 tr (Z111 P
= tr { [2 (%111 — 2%0) + (HP;“||12)B] (Hq — qu+1)}

tr (Z;.1P
— o (20 (o)) + e (A7 (1, — )
T T
= tr Z(ZA X W) R (X;'*l)T (H, — Hy,,,)
=1

[ m m—1
= trq RS D> AX W) (H, - Hy, ) X

i=1 p=0

RH—I B (inifA Xm (k) qu+1X1 1)

i=1 p=0

}

— w (RE,Ri) = Rl
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from Algorithm 3.1 and from the following result

BT (= Hy )] = e[ (=

= tr [PZT (Hg — qu)] -

[R||* = || Re|)?
= 0.

Yin-Huan Han and Hyun-Min Kim

[Ridls ﬂ
TP
1£2]J?
il
el

tr (P R)

O]

LEMMA 3.4. Suppose that the g-th Newton iteration (2.1) is con-
sistent and there exists a integer number | such that Ry # 0 for all

k=0,1,---

, 1. Then by Lemma 3.3 P, # 0 and we have
(3.2) tr (RIR;) =0andtr (P/'P;) =0 fork>j=0,1,---

A, 1> 1.

Proof. We prove the conclusion (3.2) using the principle induction.

i) We ﬁrstly prove tr (R,?Rk 1)

0,1, ,I. When [ = 1, from Algorithm 3.1
tr (R{ Ro)
”ROH T m—(pu+1i)
= tr e Z AMX (n
i=1 pu=0
Ro|?
— tr (RIRy) — |
(o Ro) = ™ || 2 2
= || Rol?
—HROH21§ pr Z ZA Xm (p+1)
P2 ’
i=1 \ p=0
2 |1Roll T
- HROH - HPOHZt (PO Z)
2 ”ROH T1 T
= — Py = (Zy— Z,
||R0|| HPOHQt 0 9 ( 0 )
2 |IRoll T
= H 0” - HPOHQt (POP)

= 0 and tr (P Pp_1)

=0 for kK =

T

Xz 1 RO

T

m m-—i
o | (XX axpenxt) m
i=1 0

T

R (X7
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and

T
R (e

= tr(Z/R) + | 15 HJZ )tr (P Py)
(

|
+

Py Zy) +tr (Z1Py)
—tr (leo + tr (Z1P0>

T

= 0.

If we assume that tr (R;:FRS,l) =0 and tr (PSTPs,l) =0 hold for [ = s,
then we obtain

tr (RI 1 Ry)
. T
_t R - ||I%S||2 iﬂfA Xm—(,tt+i)P Xi—l R
IR T #a e ‘
s i=1 pu=0
T
_ T o ||R8H2 == m— (u+z i—1
= tr (R R,) — 15t >N AKX PX] R,
|| Ps|l ol
= [|R4[I?
T
HRSH2 m—(u+i) i-1\ T
_HPSHQU . ZA X; R, (X7
_ Ry - B

for
“IRP - e [P -l)]
‘|

2 (ZP,
LA ( (2P, 21>P81)]
HPS 1]

[P H2
HR5||2tr (ZsPs—1)
(| Ps 2| Ps—1|?

= ||1Rs||* -

= [1Rs]1? = IR ]1* + tr (P, Po—1)
-0,

and
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 (P5,P)
_ 1 tr (Zs-l-lps) T
= tr { |:2 (ZS+1 ZS+1) H_PSH2P8:| PS
tr (Zsy1Ps
tr (Zy1 Ps) + r(||Ps+||12)tr (P Py)

= tr (P Zss1) + tr (Zs11 Ps)
= —tr (ZS+1PS) + tr (ZS+1PS)
=0.

ii) Suppose that tr (RIR;) = 0 and tr (P/P;) = 0 hold for all j =
0,1,---,s — 1. Then, from Algorithm 3.1 and i) we get

(RS-FIR‘)
T

— tr HR H f: A Xm ,u—i—z Xz 1 R
- 3 © J

T

%
A X~ p XL R;

i=1 pu=0
. T
HRSH2 T - — m—(pu+1i) i—1
A PRI YD AX R; (XY
§ i=1 \ p=0
IR T
TR 4)
| SHQtr PTE(Z -zl
|| Ps |2 2\
| R | [ T< tr (Z;Pj—1) )]
- — tr | PT(p, — 227 Up.
[FA TR e N Y
| RsI” T | Rs||I*tr (Z; Pj—1) T
R+ T A e )

P52

and
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1 tr(Zsi1Ps) 17
— tr { [2 (Zsp1 — Z14) + WPS} P]}

tr (ZS+1PS)

=tr (ZL,P) + A

tr (P, P))

m m-—1i

“u R (5 aagep g
i=1 pu=0

ol IR
=tr Ry 5 (Rj — Rjy1)
12l

1551 T il T
= tr (R, i) — tr (Ry 1 Rj+1
Iy 2 ) = gt ()
=0,
forall j =0,1,---,s—1. Hence, we complete the proof by i) and ii). [

From Lemma 3.4 we know that, if there is a positive number [ such
that R, # 0 for all £ = 0,1,---,[, then, the matrices R; and R; are
orthogonal for k # j.

THEOREM 3.5. Let the g-th Newton iteration (2.1) has a skew-sym-
metric solution H,. Then for a given skew-symmetric starting matrix,
the solution H, can be found, at most, in n? steps.

This theorem can be proved by the similar way of Theorem 3.3 in [1].

Proof. From Lemma 3.4, the set {Ro, Ry, -, R,2_1} is an orthog-
onal basis of R™*™. Since the ¢-th Newton iteration (2.1) has a skew-
symmetric solution, and using Lemma 3.3, Py # 0 for k. By Algorithm
3.1 and Lemma 3.4 we obtain H, , and R,z , and tr (R, Ry) = 0 for
k=0,1,---,n?>—1. However, tr (RnTng) = 0 holds only when R,2 = 0,
which implies that Hg , is a solution of the ¢-th Newton iteration. Thus
Hy , is a skew-symmetric matrix. O

From Newton’s method and the above theorem, we have the following
result.
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THEOREM 3.6. Suppose that the matrix polynomial has a skew-
symmetric solvent and each Newton iteration is consistent for a skew-
symmetric starting matrix Xo. The sequence {X}} is generated by New-
ton’s method with X such that

lim X k = S,
k—o0
and the matrix S satisfies P(S) = 0, then S is a skew-symmetric solvent.
The proof of the theorem is also similar to Theorem 3.4 in [1].

Proof. If Hy, is skew-symmetric solution of kth Newton iteration then
(k + 1)th approximation matrix is

Xg+1=Xo+ Ho+ -+ Hg.

By the properties of skew-symmetric matrix X1 is also skew-symmetric.
Since, the Newton sequence { X} } converges to a solvent S, it is a skew-
symmetric solvent. ]

In this paper, we consider an iterative method for finding a skew-
symmetric solution of matrix equation in (2.1). Then we incorporated
the iterative method into Newtons method to compute the skew-symmetric
solvent of matrix polynomial P(X) in (1.2).
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