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SKEW-SYMMETRIC SOLVENT FOR SOLVING A
POLYNOMIAL EIGENVALUE PROBLEM

Yin-Huan Han* and Hyun-Min Kim**

Abstract. In this paper a nonlinear matrix equation is considered
which has the form

P (X) = A0X
m + A1X

m−1 + · · ·+ Am−1X + Am = 0,

where X is an n× n unknown real matrix and Am, Am−1, . . . , A0

are n× n matrices with real elements. Newtons method is applied
to find the skew-symmetric solvent of the matrix polynomial P (X).
We also suggest an algorithm which converges the skew-symmetric
solvent even if the Fréchet derivative of P (X) is singular.

1. Introduction

For solving an m-th order ordinary differential equation which has a
form

A0
dm

dtm
x(t) + A1

dm−1

dtm−1
x(t) + · · ·+ Am−1

d

dt
x(t) + Amx(t) = 0,

where Am, Am−1, . . . , A0 are n × n real matrices, we need to consider
the polynomial eigenvalue problem

(1.1) P (λ)v = (λmA0 + λm−1A1 + · · ·+ λAm−1 + Am)v = 0.

For solving the problem (1.1) we may consider the matrix equation

(1.2) P (X) = A0X
m + A1X

m−1 + · · ·+ Am−1X + Am = 0.

If m = 2 the matrix equation (1.1) can be rewritten by

(1.3) Q(λ)v = (λ2A0 + λA1 + A2)v = 0,
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Figure 1. An n degree of freedom damped mass-spring
system. [9]

which arise from a freedom damped mass-spring system [2]. Figure 1
shows a connected damped mass-spring system. The i-th mass of weight
mi is connected to the (i + 1)-th mass by a spring with constant ki and
damper with constant di, and ground by a spring with constant κi and
damper constant τi.

Mehrmann and Watkins [6] showed that When A0 = AT
0 , A1 = −AT

1 ,
A2 = AT

2 in the quadratic eigenvalue problem (1.3), it has a Hamilton-
ian eigenstructure. An application of finding skew-symmetric solvent
of matrix polynomial comes from the polynomial eigenvalue problem
(1.1), since any skew-symmetric matrix has a pair of purely imaginary
eigenvalues [4], [7]. In this paper we suggest an algorithm for solving
skew-symmetric solvent of matrix polynomial.

2. Newton’s methods for nonlinear matrix equation

From the Fréchet derivative in Newton’s method of the matrix poly-
nomial (1.2), it is necessary to find the solution H ∈ Cn×n of the equa-
tion

(2.1) PX(H) =
m∑

i=1







m−i∑

µ=0

AµXm−(µ+i)


HXi−1


 = −P (X).
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Remark 2.1. Recall that PX is regular if and only if

inf
‖H‖=1

‖PX(H)‖ > 0.

Kratz and Stickel [5] used the Schur algorithm to solve (2.1). For a
given X ∈ Cn×n, compute the Schur decomposition of X

(2.2) Q∗XQ = U

where Q is unitary and U is upper triangular. Then, substituting (2.2)
into (2.1), the system is transformed to

(2.3)
m∑

i=1




m−i∑

µ=0

AµXm−(µ+i)


H

′
U i−1 = F

where H
′
= HQ and F = −P (X)Q. Taking the vec operator both sides

of (2.3) makes a linear system such that

(2.4) F̃vec(H
′
) = vec(F )

where the matrix F̃ ∈ Cn×n is

(2.5) F̃ =
m∑

i=1


(

U i−1
)T ⊗




m−i∑

µ=0

AµXm−(µ+i)





 .

Seo and Kim [8] defined F̃ij =
∑m

i=1

[
U i−1

]
ji

(∑m−i
µ=1 AµXm−(µ+i)

)
to

reduce the system size of the equation (2.4) to n× n, then F̃ in (2.5) is
represented by

(2.6) F̃ =




F̃11

F̃21 F̃22 0
...

...
. . .

F̃n1 F̃n2 · · · F̃nn




.

If we suppose that the matrices F̃ii are nonsingular, then using the
block forward substitution, the equation (2.4) can be changed to n linear
systems with size n× n such that

h′1 = F̃11
−1

f1

h′2 = F̃22
−1

(f2 − F̃21h
′
1)

...

h′n = F̃nn
−1

(fn − F̃n1h
′
1 − · · · − F̃n,n−1h

′
n−1),
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where h′i and fi are the ith columns of H ′ and F , respectively.

3. Skew-symmetric solvents of the matrix polynomial P (X)

Here, we consider an algorithm to compute skew-symmetric solutions
of the q-th Newton iteration (2.1).

Algorithm 3.1.
1. Input n×n real matrices A0, A1, · · · , Am and skew-symmetric ma-

trix Xq ∈ Rn×n.
2. Choose a skew-symmetric starting matrix Hq0 ∈ Rn×n.

3. k = 0; R0 = −P (Xq)−



m∑

i=1

m−i∑

µ=0

AµXm−(µ+i)
q Hq0X

i−1
q




Z0 =
m∑

i=1




m−i∑

µ=0

AµXm−(µ+i)
q




T

R0

(
Xi−1

q

)T

P0 =
1
2
(Z0 − ZT

0 )
4. while Rk 6= 0

Hqk+1
= Hqk

+
‖Rk‖2

‖Pk‖2
Pk

Rk+1 = −P (Xq)−



m∑

i=1

m−i∑

µ=0

AµXm−(µ+i)
q Hqk+1

Xi−1
q




Zk+1 =
m∑

i=1




m−i∑

µ=0

AµXm−(µ+i)
q




T

Rk+1

(
Xi−1

q

)T

Pk+1 =
1
2
(Zk+1 − ZT

k+1) +
tr (Zk+1Pk)
‖Pk‖2

Pk.

end

Remark 3.2. The matrices Pk and Hqk
are skew-symmetric in Algo-

rithm 3.1.

By Algorithm 3.1, we can obtain some properties which are useful for
the proof of our convergence theory.

Lemma 3.3. Let Hq be a skew-symmetric solution of the q-th Newton
iteration (2.1), then

(3.1) tr
[
PT

k (Hq −Hqk
)
]

= ‖Rk‖2, for k = 0, 1, · · · .
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Proof. When k = 0, we obtain

tr
[
PT

0 (Hq −Hq0)
]

= tr
[
1
2

(
Z0 − ZT

0

)T
(Hq −Hq0)

]

= tr
[
ZT

0 (Hq −Hq0)
]

= tr








m∑

i=1




m−i∑

µ=0

AµXm−(µ+i)
q




T

R0

(
Xi−1

q

)T




T

(Hq −Hq0)





= tr



RT

0




m∑

i=1

m−i∑

µ=0

AµXm−(µ+i)
q (Hq −Hq0) Xi−1

q








= tr



RT

0


−P (Xq)−




m∑

i=1

m−i∑

µ=0

AµXm−(µ+i)
q Hq0X

i−1
q











= ‖R0‖2,

by Algorithm 3.1.
We assume that (3.1) holds for k = l, then

tr
[
PT

l+1

(
Hq −Hql+1

)]

= tr

{[
1
2

(
Zl+1 − ZT

l+1

)
+

tr (Zl+1Pl)
‖Pl‖2

Pl

]T (
Hq −Hql+1

)
}

= tr
[
ZT

l+1

(
Hq −Hql+1

)]
+

tr (Zl+1Pl)
‖Pl‖2

tr
[
PT

l

(
Hq −Hql+1

)]

= tr








m∑

i=1




m−i∑

µ=0

AµXm−(µ+i)
q




T

Rl+1

(
Xi−1

q

)T




T

(
Hq −Hql+1

)




= tr



RT

l+1




m∑

i=1

m−i∑

µ=0

AµXm−(µ+i)
q

(
Hq −Hql+1

)
Xi−1

q








= tr



RT

l+1


−P (Xq)−




m∑

i=1

m−i∑

µ=0

AµXm−(µ+i)
q Hql+1

Xi−1
q











= tr
(
RT

l+1Rl+1

)
= ‖Rl+1‖2,
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from Algorithm 3.1 and from the following result

tr
[
PT

l

(
Hq −Hql+1

)]
= tr

[
PT

l

(
Hq −Hql

− ‖Rl‖2

‖Pl‖2
Pl

)]

= tr
[
PT

l (Hq −Hql
)
]− ‖Rl‖2

‖Pl‖2
tr

(
PT

l Pl

)

= ‖Rl‖2 − ‖Rl‖2

= 0.

Lemma 3.4. Suppose that the q-th Newton iteration (2.1) is con-
sistent and there exists a integer number l such that Rk 6= 0 for all
k = 0, 1, · · · , l. Then by Lemma 3.3 Pk 6= 0 and we have

(3.2) tr
(
RT

k Rj

)
= 0 and tr

(
PT

k Pj

)
= 0 for k > j = 0, 1, · · · , l, l ≥ 1.

Proof. We prove the conclusion (3.2) using the principle induction.
i) We firstly prove tr

(
RT

k Rk−1

)
= 0 and tr

(
PT

k Pk−1

)
= 0 for k =

0, 1, · · · , l. When l = 1, from Algorithm 3.1

tr
(
RT

1 R0

)

= tr






R0 − ‖R0‖2

‖P0‖2




m∑

i=1

m−i∑

µ=0

AµXm−(µ+i)
q P0X

i−1
q







T

R0





= tr
(
RT

0 R0

)− ‖R0‖2

‖P0‖2
tr







m∑

i=1

m−i∑

µ=0

AµXm−(µ+i)
q P0X

i−1
q




T

R0




= ‖R0‖2

−‖R0‖2

‖P0‖2
tr





PT
0




m∑

i=1




m−i∑

µ=0

AµXm−(µ+i)
q




T

R0

(
Xi−1

q

)T








= ‖R0‖2 − ‖R0‖2

‖P0‖2
tr

(
PT

0 Z0

)

= ‖R0‖2 − ‖R0‖2

‖P0‖2
tr

[
PT

0

1
2

(
Z0 − ZT

0

)]

= ‖R0‖2 − ‖R0‖2

‖P0‖2
tr

(
PT

0 P0

)

= 0,
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and

tr
(
PT

1 P0

)
= tr

{[
1
2

(
Z1 − ZT

1

)
+

tr (Z1P0)
‖P0‖2

P0

]T

P0

}

= tr
(
ZT

1 P0

)
+

tr (Z1P0)
‖P0‖2

tr
(
PT

0 P0

)

= tr
(
PT

0 Z1

)
+ tr (Z1P0)

= −tr (Z1P0) + tr (Z1P0)
= 0.

If we assume that tr
(
RT

s Rs−1

)
= 0 and tr

(
PT

s Ps−1

)
= 0 hold for l = s,

then we obtain

tr
(
RT

s+1Rs

)

= tr






Rs − ‖Rs‖2

‖Ps‖2




m∑

i=1

m−i∑

µ=0

AµXm−(µ+i)
q PsX

i−1
q







T

Rs





= tr
(
RT

s Rs

)− ‖Rs‖2

‖Ps‖2
tr







m∑

i=1

m−i∑

µ=0

AµXm−(µ+i)
q PsX

i−1
q




T

Rs




= ‖Rs‖2

−‖Rs‖2

‖Ps‖2
tr





PT
s




m∑

i=1




m−i∑

µ=0

AµXm−(µ+i)
q




T

Rs

(
Xi−1

q

)T








= ‖Rs‖2 − ‖Rs‖2

‖Ps‖2
tr

(
PT

s Zs

)

= ‖Rs‖2 − ‖Rs‖2

‖Ps‖2
tr

[
PT

s

1
2

(
Zs − ZT

s

)]

= ‖Rs‖2 − ‖Rs‖2

‖Ps‖2
tr

[
PT

s

(
Ps − tr (ZsPs−1)

‖Ps−1‖2
Ps−1

)]

= ‖Rs‖2 − ‖Rs‖2 +
‖Rs‖2tr (ZsPs−1)
‖Ps‖2‖Ps−1‖2

tr
(
PT

s Ps−1

)

= 0,

and
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tr
(
PT

s+1Ps

)

= tr

{[
1
2

(
Zs+1 − ZT

s+1

)
+

tr (Zs+1Ps)
‖Ps‖2

Ps

]T

Ps

}

= tr
(
ZT

s+1Ps

)
+

tr (Zs+1Ps)
‖Ps‖2

tr
(
PT

s Ps

)

= tr
(
PT

s Zs+1

)
+ tr (Zs+1Ps)

= −tr (Zs+1Ps) + tr (Zs+1Ps)
= 0.

ii) Suppose that tr
(
RT

s Rj

)
= 0 and tr

(
PT

s Pj

)
= 0 hold for all j =

0, 1, · · · , s− 1. Then, from Algorithm 3.1 and i) we get

tr
(
RT

s+1Rj

)

= tr






Rs − ‖Rs‖2

‖Ps‖2




m∑

i=1

m−i∑

µ=0

AµXm−(µ+i)
q PsX

i−1
q







T

Rj





= tr
(
RT

s Rj

)− ‖Rs‖2

‖Ps‖2
tr







m∑

i=1

m−i∑

µ=0

AµXm−(µ+i)
q PsX

i−1
q




T

Rj




= −‖Rs‖2

‖Ps‖2
tr





PT
s




m∑

i=1




m−i∑

µ=0

AµXm−(µ+i)
q




T

Rj

(
Xi−1

q

)T








= −‖Rs‖2

‖Ps‖2
tr

(
PT

s Zj

)

= −‖Rs‖2

‖Ps‖2
tr

[
PT

s

1
2

(
Zj − ZT

j

)]

= −‖Rs‖2

‖Ps‖2
tr

[
PT

s

(
Pj − tr (ZjPj−1)

‖Pj−1‖2
Pj−1

)]

= −‖Rs‖2

‖Ps‖2
tr

(
PT

s Pj

)
+
‖Rs‖2tr (ZjPj−1)
‖Ps‖2‖Pj−1‖2

tr
(
PT

s Pj−1

)

= 0,

and
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tr
(
PT

s+1Pj

)

= tr

{[
1
2

(
Zs+1 − ZT

s+1

)
+

tr (Zs+1Ps)
‖Ps‖2

Ps

]T

Pj

}

= tr
(
ZT

s+1Pj

)
+

tr (Zs+1Ps)
‖Ps‖2

tr
(
PT

s Pj

)

= tr








m∑

i=1




m−i∑

µ=0

AµXm−(µ+i)
q




T

Rs+1

(
Xi−1

q

)T




T

Pj





= tr


RT

s+1




m∑

i=1

m−i∑

µ=0

AµXm−(µ+i)
q PjX

i−1
q







= tr
[
RT

s+1

‖Pj‖2

‖Rj‖2
(Rj −Rj+1)

]

=
‖Pj‖2

‖Rj‖2
tr

(
RT

s+1Rj

)− ‖Pj‖2

‖Rj‖2
tr

(
RT

s+1Rj+1

)

= 0,

for all j = 0, 1, · · · , s−1. Hence, we complete the proof by i) and ii).

From Lemma 3.4 we know that, if there is a positive number l such
that Rk 6= 0 for all k = 0, 1, · · · , l, then, the matrices Rk and Rj are
orthogonal for k 6= j.

Theorem 3.5. Let the q-th Newton iteration (2.1) has a skew-sym-
metric solution Hq. Then for a given skew-symmetric starting matrix,
the solution Hq can be found, at most, in n2 steps.

This theorem can be proved by the similar way of Theorem 3.3 in [1].

Proof. From Lemma 3.4, the set {R0, R1, · · · , Rn2−1} is an orthog-
onal basis of Rn×n. Since the q-th Newton iteration (2.1) has a skew-
symmetric solution, and using Lemma 3.3, Pk 6= 0 for k. By Algorithm
3.1 and Lemma 3.4 we obtain Hqn2 and Rn2 , and tr

(
RT

n2Rk

)
= 0 for

k = 0, 1, · · · , n2−1. However, tr
(
RT

n2Rk

)
= 0 holds only when Rn2 = 0,

which implies that Hqn2 is a solution of the q-th Newton iteration. Thus
Hqn2 is a skew-symmetric matrix.

From Newton’s method and the above theorem, we have the following
result.
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Theorem 3.6. Suppose that the matrix polynomial has a skew-
symmetric solvent and each Newton iteration is consistent for a skew-
symmetric starting matrix X0. The sequence {Xk} is generated by New-
ton’s method with X0 such that

lim
k→∞

Xk = S,

and the matrix S satisfies P (S) = 0, then S is a skew-symmetric solvent.

The proof of the theorem is also similar to Theorem 3.4 in [1].

Proof. If Hk is skew-symmetric solution of kth Newton iteration then
(k + 1)th approximation matrix is

Xk+1 = X0 + H0 + · · ·+ Hk.

By the properties of skew-symmetric matrix Xk+1 is also skew-symmetric.
Since, the Newton sequence {Xk} converges to a solvent S, it is a skew-
symmetric solvent.

In this paper, we consider an iterative method for finding a skew-
symmetric solution of matrix equation in (2.1). Then we incorporated
the iterative method into Newtons method to compute the skew-symmetric
solvent of matrix polynomial P (X) in (1.2).
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