• Title/Summary/Keyword: Singularity avoidance

Search Result 29, Processing Time 0.022 seconds

A Unified Framework for Overcoming Motion Constraints of Robots Using Task Transition Algorithm (작업 전이 알고리즘 기반 로봇 동작 제한 극복 프레임워크)

  • Jang, Keunwoo;Kim, Sanghyun;Park, Suhan;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.129-141
    • /
    • 2018
  • This paper proposes a unified framework that overcomes four motion constraints including joint limit, kinematic singularity, algorithmic singularity and obstacles. The proposed framework is based on our previous works which can insert or remove tasks continuously using activation parameters and be applied to avoid joint limit and singularity. Additionally, we develop a method for avoiding obstacles and combine it into the framework to consider four motion constraints simultaneously. The performance of the proposed framework was demonstrated by simulation tests with considering four motion constraints. Results of the simulations verified the framework's effectiveness near joint limit, kinematic singularity, algorithmic singularity and obstacles. We also analyzed sensitivity of our algorithm near singularity when using closed loop inverse kinematics depending on magnitude of gain matrix.

Singularty Control of Robot Wrist Joints using Euler Parameters (오일러 파라미터를 이용한 로보트 손목관절의 특이성 회피제어)

  • Jeon, Ui-Sik;Park, Su-Heung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.137-145
    • /
    • 1992
  • Considering the singularity of robot, singularity avoidance control of robot is very important. Because it is very difficult structurally to exclude the wrist singularity. Then new control policy is needed to overcome wrist singularity. In this paper, the singularity states of robot wrist was analyzed and control algorithms for 3 and 4 axes robot wrist were proposed. Application results of the proposed control algorithms to the path including singularity showed us their usefulness and validity.

  • PDF

A New Method far Singularity Avoidance of 6 DOF Articulated Robot Manipulators using Speed Limiting algorithm (최대속도제한 알고리즘을 이용한 6축 수직다관절 로봇의 새로운 특이점 회피방법 개발)

  • 최은재;정원지;홍대선;서영교;홍형표
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.454-457
    • /
    • 2002
  • This paper presents a new motion control for singularity avoidance in 6 DOF articulated robot manipulators, based on a speed limiting algorithm for joint positions and velocities. For a given task, the robot is controlled so that the joints move with acceptable velocities and positions within the reachable range of each joint by considering the velocity limit. The proposed method was verified using MATLAB-based simulations.

  • PDF

A SINGULARITY AVOIDANCE STEERING LAW BASED ON THE MINIMIZATION TECHNIQUE

  • Oh, Hwa-Suk;Lee, Bong-Un;Rhee, Seung-Wu;Lee, Seon-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.397-404
    • /
    • 2006
  • Geometric singularity problems are principle difficulties of single-gimbal control moment gyros in spacecraft attitude control. To overcome these singularities, many steering logics have been studied. In this paper, a new null motion steering law is suggested, which is based on the minimization of the directional components of output torque with respect to the required torque. The suggested steering law has been simulated and verified to work well around several critical singular points which have been classified as testing points of avoidance algorithm in previous literatures.

Singularity Avoidance Path Planning on Cooperative Task of Dual Manipulator Using DDPG Algorithm (DDPG 알고리즘을 이용한 양팔 매니퓰레이터의 협동작업 경로상의 특이점 회피 경로 계획)

  • Lee, Jonghak;Kim, Kyeongsoo;Kim, Yunjae;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.137-146
    • /
    • 2021
  • When controlling manipulator, degree of freedom is lost in singularity so specific joint velocity does not propagate to the end effector. In addition, control problem occurs because jacobian inverse matrix can not be calculated. To avoid singularity, we apply Deep Deterministic Policy Gradient(DDPG), algorithm of reinforcement learning that rewards behavior according to actions then determines high-reward actions in simulation. DDPG uses off-policy that uses 𝝐-greedy policy for selecting action of current time step and greed policy for the next step. In the simulation, learning is given by negative reward when moving near singulairty, and positive reward when moving away from the singularity and moving to target point. The reward equation consists of distance to target point and singularity, manipulability, and arrival flag. Dual arm manipulators hold long rod at the same time and conduct experiments to avoid singularity by simulated path. In the learning process, if object to be avoided is set as a space rather than point, it is expected that avoidance of obstacles will be possible in future research.

Task Reconstruction Method for Real-Time Singularity Avoidance for Robotic Manipulators : Dynamic Task Priority Based Analysis (로봇 매니플레이터의 실시간 특이점 회피를 위한 작업 재구성법: 동적 작업 우선도에 기초한 해석)

  • 김진현;최영진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.855-868
    • /
    • 2004
  • There are several types of singularities in controlling robotic manipulators: kinematic singularity, algorithmic singularity, semi-kinematic singularity, semi-algorithmic singularity, and representation singularity. The kinematic and algorithmic singularities have been investigated intensively because they are not predictable or difficult to avoid. The problem with these singularities is an unnecessary performance reduction in non-singular region and the difficulty in performance tuning. Tn this paper, we propose a method of avoiding kinematic and algorithmic singularities by applying a task reconstruction approach while maximizing the task performance by calculating singularity measures. The proposed method is implemented by removing the component approaching the singularity calculated by using singularity measure in real time. The outstanding feature of the proposed task reconstruction method (TR-method) is that it is based on a local task reconstruction as opposed to the local joint reconstruction of many other approaches. And, this method has dynamic task priority assignment feature which ensures the system stability under singular regions owing to the change of task priority. The TR-method enables us to increase the task controller gain to improve the task performance whereas this increase can destabilize the system for the conventional algorithms in real experiments. In addition, the physical meaning of tuning parameters is very straightforward. Hence, we can maximize task performance even near the singular region while simultaneously obtaining the singularity-free motion. The advantage of the proposed method is experimentally tested by using the 7-dof spatial manipulator, and the result shows that the new method improves the performance several times over the existing algorithms.

Singularity Avoidance Algorithms for Controlling Robot Manipulator: A Comparative Study (로봇 메니퓰레이터의 제어를 위한 특이점 회피 알고리즘의 비교 연구)

  • Kim, Sanghyun;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.42-54
    • /
    • 2017
  • Using an inverse of the geometric Jacobian matrix is one of the most popular ways to control robot manipulators, because the Jacobian matrix contains the relationship between joint space velocities and operational space velocities. However, the control algorithm based on Jacobian matrix has algorithmic singularities: The robot manipulator becomes unstable when the Jacobian matrix loses rank. To solve this problem, various methods such as damped and filtered inverse have been proposed, but comparative studies to evaluate the performance of these algorithms are insufficient. Thus, this paper deals with a comparative analysis of six representative singularity avoidance algorithms: Damped Pseudo Inverse, Error Damped Pseudo Inverse, Scaled Jacobian Transpose, Selectively Damped Inverse, Filtered Inverse, and Task Transition Method. Especially, these algorithms are verified through computer simulations with a virtual model of a humanoid robot, THORMANG, in order to evaluate tracking error, computational time, and multiple task performance. With the experimental results, this paper contains a deep discussion about the effectiveness and limitations of each algorithm.

Robust Trajectory Planner for Obstacle and Singularity Avoisnce in a Robot Manipulator (장애물과 특이점의 회피를 위한 강인한 로봇의 궤적계획)

  • Leem, N. I.;Ahn, D. S.;Son, K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.593-597
    • /
    • 1993
  • This paper introduces robust trajectory planner for obstacle and singularity avoidance in a nonresonant robot manipulator. In this work, we propose new trajectory generator in cartesian space by use of Bezier function. Also, SR-inverse is used for obstacle and singularity avoidance of nonredundant robot. This result is verified with 3-D simulator which has been developed to examine the effectiveness of the suggested method.

  • PDF

All kinds of singularity avoidance in redundant manipulators for autonomous manipulation

  • Kim, Jin-Hyun;Marani, Giacomo;Chung, Wan-Kyun;Yuh, Jun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1587-1592
    • /
    • 2003
  • There are three kinds of singularity in controlling redundant manipulators. Kinematic, algorithmic and representation singularities are those. If manipulators fall into any singularity without proper action to avoid it, the control system must go away from our desire, and we can meet a dangerous situation. Hence, we have to deal the singularities very carefully. In this paper, we describe an on-line solution for avoiding the occurrence of both algorithmic and kinematic singularities in task-priority based kinematic controllers of robotic manipulators. Representation singularity can be easily avoided by using proper representation algorithm, so, in this paper, we only consider kinematic and algorithmic singularities. The proposed approach uses a desired task reconstruction and a successive task projection in order to maintain the measure for singularity over a user defined minimum value. It shows a gain in performance and a better task error especially when working in proximity of singular configurations. It is particularly suitable for autonomous systems where an off-line trajectory control scheme is often not applicable. The advantage and performance of the proposed controller is verified by simulation works. And, the experiment with real manipulator is remaining for the future works.

  • PDF

Euler parameter를 이용한 로봇 손목관절의 특이성 분석과 여유자유도 제어

  • 전의식;박수홍;오재응;염성하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.138-143
    • /
    • 1989
  • In considering the singularities of robot, singularity avoidance control of robot wrist is very important. Because it is more difficult structurally to exclude the wrist singularity than the arm singularity. Since control policies with Jacobian may bring about mathematical singularities, control policies with Euler parameters that never cause mathematical singularities are necessary. In this research, singular status of robot wrist was analyzed and control algorithms for 3 and 4 axes robot wrist were proposed. Application results of the proposed control algorithms to the path including singularity showed us usefulness and validity.

  • PDF