
All kinds of singularity avoidance in redundant manipulators for
autonomous manipulation

Jinhyun Kim∗ Giacomo Marani∗∗ Wan Kyun Chung∗ Junku Yuh∗∗

* Robotics & Bio-Mechatronics Lab., Dept. of Mechanical Engineering
Pohang University of Science & Technology(POSTECH), Pohang, KOREA

Tel : +82-54-279-2844 ; Fax : +82-54-279-5899; E-mail : {pluto,wkchung}@postech.ac.kr
** Autonomous Systems Laboratory,

University of Hawaii, Honolulu, Hawaii, USA
Tel : +1-808-956-7569 ; Fax : +1-808-956-2373; E-mail : {gmarani,yuh}@eng.hawaii.edu

Abstract :There are three kinds of singularity in controlling redundant manipulators. Kinematic, algorithmic
and representation singularities are those. If manipulators fall into any singularity without proper action to avoid
it, the control system must go away from our desire, and we can meet a dangerous situation. Hence, we have to
deal the singularities very carefully. In this paper, we describe an on-line solution for avoiding the occurrence of
both algorithmic and kinematic singularities in task-priority based kinematic controllers of robotic manipulators.
Representation singularity can be easily avoided by using proper representation algorithm, so, in this paper, we
only consider kinematic and algorithmic singularities. The proposed approach uses a desired task reconstruction
and a successive task projection in order to maintain the measure for singularity over a user defined minimum
value. It shows a gain in performance and a better task error especially when working in proximity of singular
configurations. It is particularly suitable for autonomous systems where an off-line trajectory control scheme is
often not applicable. The advantage and performance of the proposed controller is verified by simulation works.
And, the experiment with real manipulator is remaining for the future works.

Keywords : Automation; redundant system; singularity avoidance; manipulability; task priority.

1 Introduction

In the repeating tasks or simple tasks, the desired task
trajectory can be planned avoiding the singular points.
And, it can be also overcome by mechanical design. In
the manageable area, even though the manipulator are
fallen into the singular points, the damage and emer-
gency situation can be restored manually after stop-
ping the task. However, in the uncontrollable area–
space, underwater, and etc.–, we can not desire the
manual labor and the tele-operation is also limited.
So, the stability over singularity is the most important
in those cases. Many researchers investigated to solve
kinematic and algorithmic singular problem[1, 2, 3].
In autonomous robotic systems, the subtask decom-
position between position and orientation is advanta-
geous, because it will enlarge the reachable workspace
of the first-priority manipulation variable (usually po-
sition) by allowing incompleteness for the second pri-
ority subtask. The concept of task priority was in-
troduced by Nakamura[2], into the inverse kinemat-
ics of manipulators. In his approach, the occurrence
of algorithmic singularities arises from conflicts be-
tween the two subtasks, when the correspondent non-

prioritized task is not feasible. In this way, the per-
formance and error for the secondary task depend on
the method used for solving the inverse kinematics of
the second manipulation variable. This is usually done
by using classical methods like the singularity-robust
inverse(Nakamura[2]). The main disadvantages for the
above approaches are a loss of performance and an
increased tracking error[3] especially near singular re-
gions. The choice of damping constant must balance
the required performance and the error allowed. To
eliminate the occurrence of algorithmic singularities,
Chiaverini[3] proposed to solve the secondary task sep-
arately and then project it onto the null space of the
first manipulation variable. This algorithm has no al-
gorithmic singularities, however, it has always an error
for the secondary task except the product of the sec-
ondary task Jacobian and the primary task Jacobian
pseudo-inverse is zero.
Considering the measure of manipulability as a in-
dex function(or measure), the approach is suitable for
avoiding kinematic singularities. And, the product
of the secondary task Jacobian and the primary task
null space used for algorithmic singularity measure.
Based on a real-time evaluation of those measure, this

method does not require a preliminary knowledge of
any singular configurations. Using this algorithm, we
easily estimate the performance of the given measure.
The result shows a good performance near the singular
configurations, as shown by simulation results.

2 Task priority based method

Nakamura[2] introduced the inverse kinematics taking
into account of the priority of the subtasks. Let the
manipulation variable r1 ∈ <m1 be our first priority
task:

r1 = f1(q), (1)

where q ∈ <n is the robot configuration vector and r1

can be, for example, the position of the end-effector.
The differential relationship of (1) is:

ṙ1 = J1(q)q̇, (2)

where J1(q) ∈ <m1×n is the Jacobian matrix of the
first manipulation variable, r1. Likewise, if we have
additional degrees of freedom, let the manipulation
variable r2 ∈ <m2 be our secondary task:

r2 = f2(q), (3)
ṙ2 = J2(q)q̇, (4)

where J2(q) ∈ <m2×n is the Jacobian matrix of the
secondary task, r2. Equation (2) has an infinite variety
of solutions for q̇, whose general solution is obtained
using the pseudoinverse solution of the Jacobian ma-
trix:

q̇ = J1
+(q)ṙ1 +

[
In − J1

+(q)J1(q)
]
y, (5)

where J1
+(q) ∈ <n×m1 is the pseudoinverse of J1(q),

y ∈ <n is an arbitrary vector and In ∈ <n×n indicates
an identity matrix. Substituting Eq. (5) into Eq. (4),
we obtain:

J2

(
In − J1

+J1

)
y = ṙ2 − J2J1

+ṙ1. (6)

If the exact solution of y exists, Eq. (6) implies that the
second manipulation variable can be realized. Gener-
ally, the exact solution doesn’t exist, however, we can
obtain y that minimizes

∥∥ṙ2 − J2J1
+ṙ1

∥∥ in the least
square sense by using again the pseudoinverse:

y = Ĵ
+

2

(
ṙ2 − J2J1

+ṙ1

)
+

(
In − Ĵ

+

2 Ĵ2

)
z, (7)

Ĵ2 = J2

(
In − J1

+J1

)
. (8)

Finally, substituting Eq. (7) into Eq. (5), we obtain:

q̇ = J1
+ṙ1 + Ĵ

+

2

(
ṙ2 − J2J1

+ṙ1

)

+
(
In − J1

+J1

) (
In − Ĵ

+

2 Ĵ2

)
z.

(9)

If we still have remaining redundancy, let now intro-
duce a third manipulation variable r3 ∈ <m3 :

r3 = f3(q), (10)
ṙ3 = J3(q)q̇. (11)

Using again the above procedure, we obtain:

q̇ = J1
+ṙ1 + Ĵ

+

2 (ṙ2 − J2q̇1) + Ĵ
+

3 [ṙ3 − J3(q̇1 + q̇2)] ,
(12)

where:

Ĵ2 = J2

(
In − J1

+J1

)
, (13)

Ĵ3 = J3

(
In − J1

+J1 − Ĵ
+

2 Ĵ2

)
. (14)

Equation (12) suggests the recursive idea:

q̇i = q̇i−1 + Ĵ
+

i

(
ṙi − J iq̇i−1

)
Ĵ i = J iJ i

n

J i
n = J i−1

n − Ĵ
+

i−1Ĵ i−1

,

q̇0 = 0
J0 = 0
J0

n = In

.

(15)
In Eq. (15), if any Ĵ i lose rank, it means singularity
condition either kinematic or algorithmic.

3 Singularity avoidance for RMRC

In [4], the authors proposed kinematic singularity
avoidance algorithm using task reconstruction method.
In this section the algorithm is introduces briefly.
For a given manipulation variable, a singularity-free
motion may be usually achieved with an off-line path
planning. However, this approach requires an a-priori
knowledge of all the singular configurations of the ma-
nipulator.
The proposed method, based on a real-time evaluation
of the measure of manipulability, allows moving along a
singularity-free path even if the singular configurations
are not preliminarily known.
The basic idea is to circumscribe singularities by mov-
ing, when approaching to them, on a hyper-surfaces
where the measure of manipulability is constants. Fig-
ure 1 shows this concept in a generic bi-dimensional
joint space, <2. Let’s consider only one manipulation
variable like:

δq = J+(q)δr. (16)

The small variation of the measure of the first task
singularity, δm1(q), is given by:

δm1(q) =
∂m1(q)

∂q
δq =

∂m1(q)
∂q

J+δr. (17)

2

mom = constant

 mom = 0
(singularity)

Trajectory q(t)

Figure 1: Singularity-free path in a generic two-
dimensional joint space

In order to have δm1(q) = 0, Eq. (17) implies that the
given task must be orthogonal to the vector

∂m1(q)
∂q

J+ (18)

or, equivalently, that δr must be lie on the surface
defined by:

{
x ∈ <m :

(
∂m1(q)

∂q
J+

)
· x = 0

}
(19)

Let nm be the unitary vector orthogonal to the surface
Eq. (19):

nm =

(
∂m1(q)

∂q J+
)T

∣∣∣
∣∣∣∂m1(q)

∂q J+
∣∣∣
∣∣∣

(20)

Then, the reconstructed task equation, rp, is given as
below:

δrp = δr − δrcorr (21)

where:

δrcorr =
1− sign(δr · nm)

2
(δr · nm)nmk(m1, m)

+ k (m1, m/2) nm

.

(22)

In Eq. (22), k(·) represents user defined shape function.
Thus, Eq. (16) becomes:

δq = J+(q)(δr − δrcorr). (23)

This algorithm can be extended as multiple task case.
In other words, it can deal not only kinematic singulary
but also algorithmic one.
Let’s consider two subtasks case.

q̇ = J1
+ṙ1 + Ĵ

+

2

(
ṙ2 − J2J1

+ṙ1

)
. (24)

Above equation can be rewritten as

q̇ = J1
+ṙ1 + Ĵ

+

2
ˆ̇r2, (25)

where the second task kinematic singularity and algo-
rithmic singularity between the first task and the sec-
ond task introduced by Ĵ2. Therefore, for the second
task singularities, Ĵ2 does not lose rank.
Now, let’s define the measure of the second task as
δm2(q). Then, the small variation of the measure of
the second task singularities, δm2(q), is given by:

δm2(q) =
∂m2(q)

∂q
δq =

∂m2(q)
∂q

Ĵ
+

2 δr̂2. (26)

In order to have δm2(q) = 0, Eq. (26) implies that the
given task must be orthogonal to the vector

∂m2(q)
∂q

Ĵ
+

2 . (27)

Finally, we can get reconstructed second task as

δr2p = δr2 − δr2corr (28)

where δr2corr is given same as Eq. (22).

4 Numerical Example

In this example, we illustrate the efficiency of the pro-
posed singularities avoidance algorithm by presenting
some simulation results. The simulated manipulator is
a three-link planar redundant manipulator which is the
kinematic model of POSTECH DDARM–II. The de-
sired task and workspace region are depicted in Fig. 2.
Simulations for tasks of position prior to orientation
are implemented. The primary task tracks 0.3m ra-
dius circular trajectory and the secondary task keeps
90◦ orientation of a manipulator constantly.
Some part of the primary task is lying outside of the
workspace: this brings the manipulator to encounter
kinematic singularities. And, some part of secondary
task meets algorithmic singularities.
To avoid kinematic singularities, we use the measure
of manipulability[5] as a index function:

m1(q) =
√

det
[
JJT

]
(29)

The m1 takes a continuous non-negative scalar value
and becomes zero only when the Jacobian matrix is
not of full rank. As well known, m1 can be regarded
as a distance from singularity.
It is necessary to find the derivative of Eq. (29) with
respect to the joint configuration vector, q. It is simply
calculated as followed [6]:

∂m1(q)
∂qk

= m1(q) · trace
{

∂J

∂qk
J+

}
. (30)

3

Y

X
q1

q2

q3

0.35

0.35 0.26

0.3

(0.7, 0.0)

workspace

Primary Task

Secondary Task

Figure 2: Desired task and workspace

Firstly, we executed 1 task case and compare our
results with those of the Chiaverini’s damped least-
squares inverse with numerical filtering algorithm[3]
which is widely used for avoiding kinematic singular-
ity(Eq. (31)).

J+
DLS = JT (JJT + λ2umuT

m)−1, (31)

λ2 =

{
0 σm ≥ ε(
1− (σm

ε)2
)
λ2

max σm < ε,
(32)

where σm is the lowest singular value of J and um is
the corresponding output singular vector.
For the simulation of the proposed algorithm, the con-
trol frequency is 1kHz and m is set to 0.06. And, for
the Chiaverini algorithm, ε and λmax are set to 0.05
and 0.07, respectively. Those are tuned up for the best
task performance.
Figures 3 and 4 show the result of the proposed algo-
rithm and the Chiaverini algorithm, respectively. In
Fig 3(c), the manipulability measure is maintained ex-
actly 0.03(m/2) which corresponds to the lower limit
of k. So, the proposed concept of geometrical re-
construction is well performed. And, as shown in
Figs. 3(b) and 4(b), the task recovery action is bet-
ter using the proposed one around t = 2.2 for errors.
The maximum x-direction errors are almost same, be-
cause the workspace boundary is 0.96m. But, the task
recovery actions after escaping from the kinematic sin-
gularity region are different. Contrary to Fig. 4(b),
in Fig. 3(b), the task recovered immediately without
over(under)shoot.
In Fig. 4(d), the joint velocities are about two times
large comparing with the proposed one, which results
from the small value of manipulability (Fig. 4(c)).
From these simulation study, the performance of the
task reconstruction algorithm is verified. With the ma-
nipulability measure, it guarantees the robustness near
singular points.

Nextly, we ran the robot with two subtasks. In this
case, the desired trajectory has both kinematic and
algorithmic singularity situation. Figure 5 shows sim-
ulation results. In this figure, the proposed algorithm
is robustly performed over both kinematic and algo-
rithmic singularities.

5 Conclusions

The proposed method for kinematic and algorith-
mic singularity avoidance allows moving along a
singularity-free path for a generic manipulator whose
singular configurations are not preliminarily known.
This is done without using a global approach and so it
is suitable for a real-time implementation. In addition,
one of the advantages of the proposed algorithm is that
the performances are predictable. It allows to perform
“as much as possible” the desired task under the con-
straint that the distance from a singular configuration
must be greater than a lower limit.

Acknowledgement

This research was supported by the International Co-
operation Research Program(“Development of Intelli-
gent Underwater Vehicle/Manipulator and Its Control
Architecture”, M6-0302-00-0009-03-A01-00-004-00) of
the Ministry of Science & Technology, Korea.

References

[1] C. W. Wampler, “Manipulator inverse kinematic solu-
tions based on vector formualtions and damped least-
squares methods,” IEEE Trans. on Systems, Man, and
Cybernetics, vol. SMC-16, pp. 93–101, Jan. 1986.

[2] Y. Nakamura, Advanced Robotics: Redundancy and Op-
timization. Addison Wesley, 1991.

[3] S. Chiaverini, “Singularity-robust task-priority redun-
dancy resoultion for real-time kinematic control of
robot manipulators,” IEEE Trans. on Robotics and Au-
tomation, vol. 13, pp. 398–410, June 1997.

[4] G. Marani, J. Kim, J. Yuh, and W. K. Chung, “A
real-time approach for singularity avoidance in re-
solved motion rate control of robotic manipulators,” in
Proc., IEEE Int. Conf. on Robotics and Automation,
pp. 1973–1978, 2002.

[5] T. Yoshikawa, “Manipulability of robotic mechanisms,”
Int. J. of Robotic Research, vol. 4, no. 2, pp. 3–9, 1985.

[6] J. Park, Analysis and Control of Kinematically Re-
dundant Manipulators: An Approach Based on Kine-
matically Decoupled Joint Space Decomposition. PhD
thesis, Pohang University of Science and Technol-
ogy(POSTECH), 1999.

4

0 0.2 0.4 0.6 0.8 1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

 X(m)

 Y
(m

)

(a) Task in the x-z plane

1.5 2 2.5
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

 Time(s)

 T
as

k
er

ro
r(

m
)

x error
y error

(b) Task errors

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 Time(s)

 M
an

ip
ul

ab
ili

ty
 m

ea
su

re

(c) Manipulability

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

8

10

 Time(s)

 J
oi

nt
 v

el
oc

ity
 (

ra
d/

s)

 Joint 1
 Joint 2
 Joint 3

(d) Joint velocity

Figure 3: Simulation with the proposed algorithm

0 0.2 0.4 0.6 0.8 1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

 X(m)

 Y
(m

)

(a) Task in the x-z plane

1.5 2 2.5
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

 Time(s)
 T

as
k

er
ro

r(
m

)

x error
y error

(b) Task errors

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 Time(s)

 M
an

ip
ul

ab
ili

ty
 m

ea
su

re

(c) Manipulability

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

8

10

 Time(s)

 J
oi

nt
 v

el
oc

ity
 (

ra
d/

s)

 Joint 1
 Joint 2
 Joint 3

(d) Joint velocity

Figure 4: Simulation with damped least-squares in-
verse

5

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

 X(m)

 Y
(m

)

(a) Task in the x-z plane

1.5 2 2.5
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

 Time(s)

 T
as

k
er

ro
r(

m
)

x error
y error

(b) Primary task errors

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 Time(s)

 S
ec

on
da

ry
 ta

sk
 e

rr
or

(r
ad

)

 Secondary task error
 Inevitable secondary task error

(c) Secondary task error

Figure 5: Simulation result with two subtasks

6

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 1587
	page21: 1588
	page31: 1589
	page41: 1590
	page51: 1591
	page61: 1592

