• Title/Summary/Keyword: Singular value Decomposition

Search Result 371, Processing Time 0.024 seconds

ASSVD: Adaptive Sparse Singular Value Decomposition for High Dimensional Matrices

  • Ding, Xiucai;Chen, Xianyi;Zou, Mengling;Zhang, Guangxing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2634-2648
    • /
    • 2020
  • In this paper, an adaptive sparse singular value decomposition (ASSVD) algorithm is proposed to estimate the signal matrix when only one data matrix is observed and there is high dimensional white noise, in which we assume that the signal matrix is low-rank and has sparse singular vectors, i.e. it is a simultaneously low-rank and sparse matrix. It is a structured matrix since the non-zero entries are confined on some small blocks. The proposed algorithm estimates the singular values and vectors separable by exploring the structure of singular vectors, in which the recent developments in Random Matrix Theory known as anisotropic Marchenko-Pastur law are used. And then we prove that when the signal is strong in the sense that the signal to noise ratio is above some threshold, our estimator is consistent and outperforms over many state-of-the-art algorithms. Moreover, our estimator is adaptive to the data set and does not require the variance of the noise to be known or estimated. Numerical simulations indicate that ASSVD still works well when the signal matrix is not very sparse.

Block Based Blind & Secure Gray Image Watermarking Technique Based on Discrete Wavelet Transform and Singular Value Decomposition

  • Imran, Muhammad;Harvey, Bruce A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.883-900
    • /
    • 2017
  • In this paper block based blind secure gray image watermarking scheme based on discrete wavelet transform and singular value decomposition is proposed. In devising the proposed scheme, security is given high importance along with other two requirements: robustness and imperceptibility. The use of discrete wavelet transform not only improves robustness but the selection of bands with high tolerance towards noise caused an improvement in terms of imperceptibility. The robustness further improved due to the involvement of singular vectors along with singular values in watermark embedding and extraction process. Finally, to achieve security, the selected DWT band is decomposed into smaller blocks and random blocks are chosen for modification. Furthermore, the elements of left and right singular vectors of selected blocks are chosen based on their dependence upon each other for watermark embedding. Various experiments using different images as host and watermark were conducted to examine and validate the proposed technique. Additionally, the proposed technique is tested against various attacks like compression, affine transformation, cropping, translation, X shearing, scaling, Y shearing, filtering, blurring, different kinds of noises, histogram equalization, rotation, etc. Lastly, the proposed technique is compared with state-of-the-art watermarking techniques and their comparison shows significant improvement of proposed scheme over existing techniques.

A NUMERICAL METHOD FOR CAUCHY PROBLEM USING SINGULAR VALUE DECOMPOSITION

  • Lee, June-Yub;Yoon, Jeong-Rock
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.487-508
    • /
    • 2001
  • We consider the Cauchy problem for Laplacian. Using the single layer representation, we obtain an equivalent system of boundary integral equations. We show the singular values of the ill-posed Cauchy operator decay exponentially, which means that a small error is exponentially amplified in the solution of the Cauchy problem. We show the decaying rate is dependent on the geometry of he domain, which provides the information on the choice of numerically meaningful modes. We suggest a pseudo-inverse regularization method based on singular value decomposition and present various numerical simulations.

  • PDF

Suppression of IEEE 802.11a Interference in TH-UWB Systems Using Singular Value Decomposition in Wireless Multipath Channels

  • Xu, Shaoyi;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.63-70
    • /
    • 2008
  • Narrow-band interference (NBI) from the coexisting narrow-band services affects the performance of ultra wideband (UWB) systems considerably due to the high power of these narrow-band signals with respect to the UWB signals. Specifically, IEEE 802.11a systems which operate around 5 GHz and overlap the band of UWB signals may interfere with UWB systems significantly. In this paper, we suggest a novel NBI suppression technique based on singular value decomposition (SVD) algorithm in time hopping UWB (TH-UWB) systems. SVD is used to approximate the interference which then is subtracted from the received signals. The algorithm precision and closed-form bit error rate (BER) expression are derived in the wireless multipath channel. Comparing with the conventional suppression methods such as a notch filter and a RAKE receiver, the proposed method is simple and robust and especially suitable for UWB systems.

Generalization of Quantification for PLS Correlation

  • Yi, Seong-Keun;Huh, Myung-Hoe
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.225-237
    • /
    • 2012
  • This study proposes a quantification algorithm for a PLS method with several sets of variables. We called the quantification method for PLS with more than 2 sets of data a generalization. The basis of the quantification for PLS method is singular value decomposition. To derive the form of singular value decomposition in the data with more than 2 sets more easily, we used the constraint, $a^ta+b^tb+c^tc=3$ not $a^ta=1$, $b^tb=1$, and $c^tc=1$, for instance, in the case of 3 data sets. However, to prove that there is no difference, we showed it by the use of 2 data sets case because it is very complicate to prove with 3 data sets. The keys of the study are how to form the singular value decomposition and how to get the coordinates for the plots of variables and observations.

A Robust and Removable Watermarking Scheme Using Singular Value Decomposition

  • Di, Ya-Feng;Lee, Chin-Feng;Wang, Zhi-Hui;Chang, Chin-Chen;Li, Jianjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5268-5285
    • /
    • 2016
  • Digital watermarking techniques are widely applied to protect the integrity and copyright of digital content. In a majority of the literature for watermarking techniques, the watermarked image often causes some distortions after embedding a watermark. For image-quality-concerned users, the distortions from a watermarked image are unacceptable. In this article, we propose a removable watermarking scheme that can restore an original-like image and resist signal-processing attacks to protect the ownership of an image by utilizing the property of singular value decomposition (SVD). The experimental results reveal that the proposed scheme meets the requirements of watermarking robustness, and also reestablishes an image like the original with average PSNR values of 59.07 dB for reconstructed images.

A High-Dimensional Index Structure Based on Singular Value Decomposition (Singular Value Decomposition 기반 고차원 인덱스 구조)

  • Kim, Sang-Wook;Aggarwal, Charu;Yu, Philip S.
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.213-218
    • /
    • 2000
  • The nearest neighbor query is an important operation widely used in multimedia databases for finding the object that is most similar to a given query object. Most of techniques for processing nearest neighbor queries employ multidimensional indexes for effective indexing of objects. However, the performance of previous multidimensional indexes, which use N-dimensional rectangles or spheres for representing the capsule of the object cluster, deteriorates seriously as the number of dimensions gets higher. This paper proposes a new index structure based singular value decomposition resolving this problem and the query processing method using it. We also verify the superiority of our approach through performance evaluation by performing extensive experiments.

  • PDF

Review on Digital Image Watermarking Based on Singular Value Decomposition

  • Wang, Chengyou;Zhang, Yunpeng;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1585-1601
    • /
    • 2017
  • With the rapid development of computer technologies, a number of image modification methods have emerged, which have great impacts on the security of image information. Therefore, it is necessary to protect the integrity and authenticity of digital images, and digital watermarking technique consequently becomes a research hotspot. An effort is made to survey and analyze advancements of image watermarking algorithms based on singular value decomposition (SVD) in recent years. In the first part, an overview of watermarking techniques is presented and then mathematical theory of SVD is given. Besides, SVD watermarking model, features, and evaluation indexes are demonstrated. Various SVD-based watermarking algorithms, as well as hybrid watermarking algorithms based on SVD and other transforms for copyright protection, tamper detection, location, and recovery are reviewed in the last part.

A Hybrid Coordinate Partitioning Method in Mechanical Systems Containing Singular Configurations

  • Yoo, Wan-Suk;Lee, Soon-Young;Kim, Oe-Jo
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.3
    • /
    • pp.174-180
    • /
    • 2002
  • In multibody dynamics, DAE(Differential Algebraic Equations) that combine differential equations of motion and kinematic constraint equations should be solved. To solve these equations, either coordinate partitioning method or constraint stabilization method is commonly used. The most typical coordinate partitioning methods are LU decomposition, QR decomposition, and SVD(singular value decomposition). The objective of this research is to suggest a hybrid coordinate partitioning method in the dynamic analysis of multibody systems containing singular configurations. Two coordinate partitioning methods, i.e. LU decomposition and QR decomposition for constrained multibody systems, are combined for a new hybrid coordinate partitioning method. The proposed hybrid method reduces the simulation time while keeping accuracy of the solution.

Algorithm for Fault Detection and Classification Using Wavelet Singular Value Decomposition for Wide-Area Protection

  • Lee, Jae-Won;Kim, Won-Ki;Oh, Yun-Sik;Seo, Hun-Chul;Jang, Won-Hyeok;Kim, Yoon Sang;Park, Chul-Won;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.729-739
    • /
    • 2015
  • An algorithm for fault detection and classification method for wide-area protection in Korean transmission systems is proposed. The modeling of 345-kV and 765-kV Korean power system transmission networks using the Electro Magnetic Transient Program - Restructured Version (EMTP-RV) is presented and the algorithm for fault detection and classification in transmission lines is developed. The proposed algorithm uses the Wavelet Transform (WT) and Singular Value Decomposition (SVD). The Singular value of Approximation coefficient (SA) and part Sum of Detail coefficient (SD) are introduced. The characteristics of the SA and SD at the fault conditions are analyzed and used in the algorithm for fault detection and classification. The validation of the proposed algorithm is verified by various simulation results.