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Abstract

This study proposes a quantification algorithm for a PLS method with several sets of variables. We called

the quantification method for PLS with more than 2 sets of data a generalization. The basis of the quantifi-

cation for PLS method is singular value decomposition. To derive the form of singular value decomposition

in the data with more than 2 sets more easily, we used the constraint, ata + btb + ctc = 3 not ata = 1,

btb = 1, and ctc = 1, for instance, in the case of 3 data sets. However, to prove that there is no difference,

we showed it by the use of 2 data sets case because it is very complicate to prove with 3 data sets. The keys

of the study are how to form the singular value decomposition and how to get the coordinates for the plots

of variables and observations.

Keywords: Partial Least Squares(PLS), generalization of quantification for PLS correlation.

1. Motivation, Problem and Concept of Generalization

Partial Least Squares(PLS) has been a very useful tool in the reduction of data when the number

of observation is smaller than the number of variables (Helland, 2005). There are limited studies

that compare the quantification methods of PLS with multivariate data analysis. Quantification is

a method that tries to reduce and to visualize multivariate data into the lower dimensional space.

Huh and his colleagues have tried this kind of endeavor (Huh et al., 2007; Huh, 1999; Park and

Huh, 1996; Han, 1995).

Based on the above mentioned quantification idea, we suggested how to quantify partial least squares

with 2 sets of data (Huh et al., 2007). We are now interested in quantification of PLS data with

more than 2 sets. We will call it as a generalization of quantification for PLS correlation.

The PLS correlation can be extended to three or more sets of variables. Thus, we consider 3 sets

of variables X(n × p), Y (n × q), and Z(n × r). Let denote Xa, Y b, and Zc be the projections of

each data matrix X, Y , and Z. On this occasion, the solution problem will be as follows. Unlike

constraint suggested in the case of two sets of variables (Huh et al., 2007), we use the constraint,
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ata + btb + ctc = 3 to get the solution more easily (Yi, 2007). The constraint ata = 1, btb = 1,

and ctc = 1 is a more natural form on this objective function; however, a simpler constraint is

considered to solve the objective function more easily.

2. Approach and Solution

To show that it is not problematic for this simpler constraint to solve the objective function, we

are going to compare a natural form of constraint (ata = 1, and btb = 1), with a simpler form

of constraint (ata + btb = 2), in the case of two sets of variables for convenience. Let us consider

following objective function.

maximize (w.r.t. a, b, and c) Cov(Xa, Y b) + Cov(Xa,Zc) + Cov(Y b, Zc) (2.1)

subject to ata+ btb+ ctc = 3.

Lagrangian function can be used to get the solution of (2.1) under the constraints. Let us define

the function L as

L(a, b, λ) = atXtY b+ btY tZc+ atXtZc− λ(ata+ btb+ ctc− 3). (2.2)

By setting partial derivatives of (2.2) to 0p, 0q, 0r respectively, we obtain

∂L

∂a
= XtY b+XtZc− 2λa = 0p, (2.3)

∂L

∂b
= Y tXa+ Y tZc− 2λb = 0q, (2.4)

∂L

∂c
= ZtXa+ ZtY b− 2λc = 0r. (2.5)

It is very complicated to solve the simultaneous equations of (2.3), (2.4) and (2.5). Let us define

matrix E and D as follows.

E =

XtX XtY XtZ

Y tX Y tY Y tZ

ZtX ZtY ZtZ

 , D =

XtX

Y tY

ZtZ

 , λ = constant, v =

 ab
c

 ,
where vtv = 3 (∵ ata+ btb+ ctc = 3).

By the use of (2.3), (2.4) and (2.5), we consider following equation to derive eigensystem.

(E −D)v = 2λv. (2.6)

If we denote M for (E −D), we obtain (2.7).

Mv = 2λv, (2.7)

where M =

[
0 XtY XtZ

Y tX 0 Y tZ

ZtX ZtY 0

]
.

To find weight vectors, we can use eigenvalue decomposition. By the use of SVD of M , we can

obtain eigenvalues and eigenvectors (= v). When M is used for obtaining meaningful eigenvalues

and eigenvectors, matrix M should be positive definite; however, in this case we cannot guarantee

that matrix M will be positive definite.
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All eigenvalues are not necessarily positive after we obtain the eigenvalues by SVD. At least one

positive eigenvalue corresponding to eigenvector is sufficient, because the goal of the first step is to

find the eigenvector with the largest eigenvalue.

When we solve the generalization problem, we have to be cautious to following two points. First, as

matrix M is symmetric and has identical paired components, the covariance should be divided by

2. Second, as the eigenvector v is composed of three vectors, a, b, and c (where ata+ btb+ ctc = 3),

we have to multiply vtv by 3.

Now we will argue that there is no difference between the constraints, in the case of two sets

of variables. On this occasion, the objective is to maximize Cov(Xa, Y b) under the constraint

ata + btb = 2. In a similar manner, Lagrangian function can be used to get the solution of the

problem. Let us define the function L as

L(a, b, λ) = atXtY b− λ(ata+ btb− 2). (2.8)

By setting the partial differential of L to 0p and 0q,

∂L

∂a
= XtY b− 2λa = 0p, (2.9)

∂L

∂b
= Y ′Xa− 2λb = 0q. (2.10)

By solving the simultaneous equations of (2.9) and (2.10) with respect to a, b is eliminated. Conse-

quently, we have

XtY Y tXa = 4λ2a. (2.11)

Here, the solution of a is an eigenvector of p×p non-negative matrix XtY Y tX. In the same manner,

the solution of b is an eigenvector of q × q non-negative matrix Y tXXtY . Therefore, both a and b

can be obtained from SVD (singular value decomposition) of p× q matrix XtY . (2.11) is the same

with the result derived under the constraint ata = btb = 1. Regardless of constraints, the same

eigensystem is derived.

To prove that the above idea is correct, we are going to apply the same idea to the case of data

matrix with two sets of variables. If that idea can be applied to the case of two data sets, we can

infer that it would work for the case of more than two data sets.

To solve simultaneous equations of (2.9) and (2.10), and to obtain eigensystem, let us define matrix

E2 and D2 as follows.

E2 =

[
XtX XtY

Y tX Y tY

]
, D2 =

[
XtX

Y tY

]
, λ = constant, v =

[
a

b

]
,

where vtv = 2 (∵ ata+ btb = 2).

By the use of (2.9), and (2.10), we consider

(E2 −D2)v = 2λv. (2.12)

If we denote M2 as E2 −D2, we obtain the following eigensystem.

M2v = 2λv, (2.13)

where M2 =
[

0 XtY

Y tX 0

]
.

Thus, when we use SVD of matrix M2 to obtain eigenvalues and eigenvectors, it means SVD of

XtY and Y tX.



228 Seong Keun Yi, Myung-Hoe Huh

3. Quantification Algorithm

The quantification method for PLS correlation with many sets of variables are exactly the same

with the case of two sets of variables (for the two sets of data, refer to the Huh et al. (2007)).

Finding weight vectors is very complicated (as shown above) when compared to PLS correlation

with two sets of variables.

For convenience, we will consider three sets of variables, X(n × p), Y (n × q) and Z(n × r) for

quantification algorithm for generalization of PLS correlation. We assume that data are centered

and scaled. We project X onto Xa = s (n× 1), Y onto Y b = t (n× 1), and Z onto Zc = u (n× 1).

The quantification procedures are as follows (We use the following notations).

Notations

• K: data matrix with many sets of data matrix

• X,Y, Z: each set of data matrix

• M : square matrix (KtK) without diagonal

• a, b, c: weight vectors obtained from SVD

• s, t, u: score vectors of data set X, Y

• gX : loading vector of data set X

• gY : loading vector of data set Y

• gZ : loading vector of data set Z

• X̂: predicted value of variables in data set X

• Ŷ : predicted value of variables in data set Y

• Ẑ: predicted value of variables in data set Z

• number in subscript: PLS cycle

Cycle 1

Step 1: Find weight vectors and score vectors

Find weight vectors, a1, b1, and c1 in the manner of maximizing Cov(Xa1, Y b1)+Cov(Xa1, Zc1)+

Cov(Y b1, Zc1) under the constraints of at1a1 + bt1b1 + ct1c1 = 3. By SVD of matrix M , we obtain

eigenvector of M . By multiplying eigenvector of M by square root 3, weight vectors, a1, b1 and c1
can be obtained. When we obtain a1, b1 and c1, we can calculate s1, t1 and u1 by multiplying X1, Y1

and Z1 by a1, b1 and c1 respectively. Accordingly, we can obtain score vector X1a1 = s1, Y1b1 = t1
and Z1c1 = u1. In this step, if eigenvalues of matrix M1 are all zero or negative, we have to stop

this quantification process. If one of the eigenvalues at least is positive, we continue the process.

Step 2: Find loading vectors

Obtain X̂1, Ŷ1 and Ẑ1 by regressing X1 on s1, Y1 on t1 and Z1 on u1 respectively. We can find

loading vectors in this step. Loading vectors of variables on scores are the regression coefficients.

They are as follows.

X̂1 = s1
(
st1s1

)−1
st1X1

(
= s1g

t
1.X

)
, where gt1.X =

(
st1s1

)−1
st1X1,

Ŷ1 = t1
(
tt1t1

)−1
tt1Y1

(
= t1g

t
1.Y

)
, where gt1.Y =

(
tt1t1

)−1
tt1Y1,

Ẑ1 = u1

(
ut
1u1

)−1
ut
1Z1

(
= u1g

t
1.Z

)
, where gt1.Z =

(
ut
1u1

)−1
ut
1Z1.
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Table 3.1. Quantification formulas of PLS correlation for columns (variables)

Dimension 1 Dimension 2

X variables xtjs
∗
1 xtjs

∗
2

Y variables ytkt
∗
1 ytkt

∗
2

Z variables ztlu
∗
1 ztlu

∗
2

Note: s∗1 = s1/||s1||, s∗2 = s2/||s2||, t∗1 = t1/||t1||, t∗2 = t2/||t2||, u∗1 = u1/||u1||, u∗2 = u2/||u2||

Table 3.2. Quantification formulas of PLS correlation for rows (observations)

Dimension 1 Dimension 2

Observations in data matrix X X1a1 = s1 X2a2 = s2
Observations in data matrix Y Y1b1 = t1 Y2b2 = t2
Observations in data matrix Z Z1c1 = u1 Z2c2 = u2

Here, gt1.X , gt1.Y and gt1.Z are loading vectors for each set of variables.

Step 3: Deflate the data

Deflate X1, Y1 and Z1 in the following manner.

X2 = X1 − X̂1,

Y2 = Y1 − Ŷ1,

Z2 = Z1 − Ẑ1.

Cycle 2

Step 4: Find weight vectors and score vectors

Find a2, b2 and c2 in the manner of maximizing Cov(X2a2, Y2b2)+Cov(X2a2, Z2c2)+Cov(Y2b2, Z2c2)

under the constraint of at2a2+b
t
2b2+c

t
2c2 = 3. SVD of matrixM2 that is derived from simultaneous

equations is needed to obtain a2, b2 and c2. If we obtain a2, b2 and c2, we can calculate s2, t2 and

u2 by multiplying X2, Y2 and Z2 by a2, b2 and c2, respectively, like Step 1.

Step 5: Finding loading vectors

Obtain X̂2, Ŷ2 and Ẑ2 by regressing X2 on s2, Y2 on t2 and Z2 on u2 respectively. We can obtain

loading vectors in this step.

Through the cycle of getting suitable number of components, we can get the coordinates of the

variables(loading vectors) and observations(score vectors). Thus, columns xj (j = 1, 2, . . . , p) of

X can be pointed on the linear space Pj : (xtjs
∗
1, x

t
js
∗
2, . . .) generated by s1, s2, . . . . Columns

yk (k = 1, 2, . . . , q) of Y can be pointed on the linear space Qk : (ytkt
∗
1, y

t
kt
∗
2, . . .) generated by

t1, t2, . . . . Columns zl (l = 1, 2, . . . , r) of Y can be pointed on the linear space Rl : (z
t
lu
∗
1, z

t
lu
∗
2, . . .)

generated by u1, u2, . . . . Here s∗1 = s1/||s1||, t∗1 = t1/||t1|| and u∗1 = u1/||u1||.

4. Numerical Example

4.1. Data description

The data shown as an example here are the survey results of the Chinese automobile market.

We showed three sets of data that influence brand performance. They are data for the property

evaluation of the automobile, the data for property evaluation of dealer service, and the data for
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Table 4.1. Automobile brands surveyed in China

1. Beijing Hyundai 2. Beijing Jeep 3. Changan Ford 4. Changan Suzuki

5. Dongfeng Citroen 6. Dongfeng Honda 7. Dongfeng Nissan 8. DYK

9. Southeast Motor 10. Faw Hainan Mazda 11. Faw Mazda 12. Faw-VW

13. Guangzhou Honda 14. Guangzhou Toyota 15. Geely 16. Nanjing Fiat

17. Chery 18. Shanghai GM 19. SVE 20. Tianjin Faw

21. Faw Toyota 22. Korean Hyundai 23. Korean Kia 24. Hafei Motor

25. Changhe Suzuki 26. Changan Motor 27. Biyadi 28. Jiangnan Auto

29. Faw Huali 30. Jilin Tongtian 31. Dongfeng Liuzhou 32. Nanjing Motor

33. Dongfeng Peugeot 34. SGM Wuling 35. Shanghai Maple 36. Beijing Benz

37. Huachen BMW 38. Huachen Motor 39. Faw Motor 40. Changcheng Auto

41. Changfeng Auto 42. Jiangling Auto 43. Zhengzhou Nissan 44. Jiao Auto

45. Huatai Hyundai 46. Beijing Futon 47. Beijing Auto 48. Jianghuai Auto

49. Baolong Auto 50. Mercedes-Benz

Table 4.2. Property list of automobile brands

1. proper engine displacement/power 2. engine type (V6 or diesel engine)

3. good acceleration 4. good performance in cross country running

5. stability at steering 6. convenience for parking

7. durability of the whole 8. type of drive (two-wheel/four-wheel drive)

9. gear type (manual/auto) 10. overall exterior styling

11. overall interior 12. broad vision

13. car size 14. convenience to get in and out

15. convenience to load and unload cargoes 16. space of the front seats

17. space of the second row 18. overall quietness

19. standard features 20. price

21. scope of quality guarantee 22. future trading price

23. fuel efficiency 24. maintenance efficiency

25. manufacturer impression 26. place of origin

27. availability of parts 28. cargo capacity

29. antitheft device 30. overall safety

31. environmental protection 32. sales service

33. after-sales service 34. lead time

Table 4.3. Property list of automobile dealer service

1. convenience of visiting 2. vehicle display

3. test drive 4. salesperson’s knowledge about vehicle

5. courtesy/friendliness/honesty of salesperson 6. clear/accurate explanation of all documents

7. financial arrangements 8. time period for the final delivery

9. state of your vehicle at delivery 10. relationship after purchase

11. sufficient supply of advertising materials

property evaluation of repair service on 50 automobile brands (= companies) that are collected

from the survey done in 2006.

Automobile buyers of each brands evaluated the properties of car they bought, properties of dealer

service they visited and properties of repair service experienced. The evaluation data are averaged

based on the brands that automobile buyers experienced.

We consider the data matrix K with 53 variables and 50 observations (companies). Data matrix

K consists of three sets of variables such as X (50× 34), Y (50× 11) and Z (50× 8). Here, X is a

data set for the consumer evaluation of properties for automobile repair services. Y is a data set
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Table 4.4. Properties list of automobile repair services

1. the number of 4s shop for repair service is proper

2. convenience of location of 4s shop for repair service

3. fairness of charges for service work performed

4. quick repair work

5. repair equipment and facility are excellent

6. quality of work performed (skills) are excellent

7. kindness of the repair person

8. repair service center environment (customer lounge and cleanness)

Figure 4.1. Plots of variables and observations of X by PLS generalization

for the consumer evaluation of automobile dealer service of the company, and Z is a data set for

the consumer evaluation of automobile repair service of the company. Here, data sets X, Y , and Z

are collected on the seven point scale (from point 1 to point 7) that is scaled and centered for the

analysis. The details are listed in Table 4.1, Table 4.2, Table 4.3 and Table 4.4.

4.2. Interpretation of quantification result

The left part of Figure 4.1 is a projection of variables (property evaluation of automobile brands)

in data set X onto the space generated by score vector s1 and s2. Each number in the figure means

the variables of data set X. The right part of Figure 4.1 is a projection of observations (brands)

onto the same space.

The plots in data set X and the plots in data set Y are scattered with similar direction. See Figure

4.2. We can find that data set X and data set Y have a positive relationship in the shape. The

plots in data set Z are scattered with the opposite direction to the plots in data set X and the plots

in data set Y . See Figure 4.3. It means that data set Z has a negative relationship with data set

X and data set Y .

An interesting phenomenon is found in the right part of the Figure 4.1. The X variables are divided

into two groups on the direction. The variables of the first group gather around variable 30 (overall

safety). They are variable 25 (manufacturer’s impression), variable 13 (car size), variable 10 (overall

exterior styling) and so forth. The variables of the second group gather around variable 22 (future
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Figure 4.2. Plots of variables and observations of Y by PLS generalization

trading price). They are variable 20 (price), variable 15 (convenience to load and unload cargoes),

variable 29 (antitheft device) and so forth. We can interpret that the first group is on ‘the basic

performance or the function of the automobile’ and the second one is on ‘the additional value of

the automobile’.

The observations (brands) are dense around the second axis and scattered along the first axis. We

can interpret that there is no substantial difference in the second axis and some differences in the

first axis among the observations (brands). That is, the differences among the brands occur only

in the first axis.

We can combine the plots of X variables with X observations. Brand 46 (Beijing Futon) is very

far in the direction of the second group of the X variables. It can be interpreted that brand 46 is

evaluated most positively in the second group of variables. Brand 47 (Beijing Auto) and brand 30

(Jilin Tongtian) have a same direction with the second group; however, brand 37 (Huachen BMW)

has a same direction with the first group of variables.

In addition, brand 34 (SGM Wuling) and brand 28 (Jiangnan Auto) are in the opposite direction

to the other variables. It seems that they are poorly evaluated in the properties. Brand 44 (Jiao

Auto) and brand 26 (Changan Motor) have similar position with brand 34 and brand 28.

The left part of Figure 4.2 is a projection of variables (property evaluation of automobile dealer

service) in data set Y onto the space generated by score vector t1 and t2. Each number in the figure

means the variables of data set Y . And the right part of Figure 4.2 is a projection of observations

(brands) onto the same space.

The overall plots of data set Y are very similar to data set X. The Y -variables can be divided

into two groups. The variables of the first group gather around variable 1 (convenience of visiting)

and variable 2 (display of vehicle). The variables of the second group gather around the variable 5

(courtesy/friendliness/honesty of salesperson) and variable 11 (relationship after purchase). We can

give the meaning of ‘dealer’s basic function’ to the first group of variables, considering the meaning

of the variables. We can infer the meaning of ‘dealer’s additional function’ from the second groups

of variables; however, only the variable 4 (salesperson’s knowledge about vehicle) locates far and

solely from the other groups of variables.
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Figure 4.3. Plots of variables and observations of Z by PLS generalization

Brand 46 (Beijing Futon) has the same direction with the second group of variables and it can

be interpreted that brand 46 is evaluated most positively in the properties of ‘dealer’s additional

function’; however, brand 49 (Baolong Auto) has the same direction with the first group of variables.

Similarly we can interpret that brand 49 is evaluated most positively in the properties of ‘dealer’s

basic function’.

Brand 50 (Mercedes-Benz) has an opposite direction with a overall plots of the Y variables. It can

be interpreted that brand 50 is evaluated most negatively; in addition, brand 34 (SGM Wuling) has

a similar position to brand 50.

The left part of Figure 4.3 is a projection of variables (property evaluation of automobile repair

service) in data set Z onto the space generated by score vector u1 and u2. Each number in the figure

means the variables of data set Z. And the right part of Figure 4.3 is a projection of observations

(brands) onto the same space. Very similarly to the plots of X and Y , the variables of Z are

scattered along the second axis.

The Z-variables are also divided into two groups. The first group consists of variable 1 (the number

of 4s shop) and variable 2 (convenience of location). The second group consists of other variables.

We can give the meaning of ‘convenience of the repair service’ to the first group, and the meaning

of ‘quality of the repair service’ to the second group.

The overall plots of data set Z are somewhat different from to data set X and Y . The observations

(brands) are dense around the second axis and the first axis. In the case of properties of the repair

service of the brands, automobile buyers do not perceive the brands differently. Brand 50 (Mercedes-

Benz) and brand 14 (Guangzhou Toyota) have the same direction with the plots of the variables

in data set Z. In contrary, brand 49 (Baolong Auto) has the opposite direction to the ‘quality of

the repair service’. Brand 46 (Beijing Futon) has the opposite direction to the ‘convenience of the

repair service’.

5. Summary and Future Research Direction

This research proposes a quantification algorithm for PLS method. We propose how to quantify
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PLS methods that have several sets of variables based on singular value decomposition. To derive

the form of singular value decomposition in the data with more than 2 sets more easily, we used the

constraint, ata + btb + ctc = 3 not ata = 1, btb = 1, and ctc = 1. However, there is no difference.

We showed it by the use of 2 data sets case, because it is very complicated to prove it with 3 data

sets.

After getting the form of singular value decomposition, a similar process we suggested in an earlier

paper (Huh et al., 2007) was adopted to quantify the many data sets. Consequently, the quantifica-

tion technique for a PLS method gives us a better understanding of the structure of variables and

observations. The quantification technique proposed here is very useful when there are several sets

of variables.

We can consider another quantification method for PLS correlation. When there are sets of variables,

the number of extracted score vectors would be the number of set variables. In that case the

quantification of the variables and observations on the linear spaces that are generated by score

vectors will be complex. Let us consider following case. When there are M sets of variables, the

number of score vectors extracted in the first PLS cycle will be M . When we perform the second

cycle, the number of score vectors will be 2M . If M is large, the representation or visualization of

the data set will be very complicated.

The idea of quantification is to represent or visualize the variables and observations on the reduced

space. For that reason, when there are so many sets of variables to be quantified, that kind of

quantification might be meaningless. Thus, we can consider another quantification algorithm for

PLS method in case there are so many sets of variables.

Wold et al. (1987, recited in Westerhuis et al., 1998) proposed two types of so-called multi-block

case algorithm for analyzing the interrelationship among the blocks (they called set of variables as

block). The first one is consensus PCA (= CPCA) and the other one is hierarchical PCA(HPCA).

The difference between CPCA and HPCA lies in selecting the starting super score; however, in the

case of CPCA, the resulting super score will be variant depending on how starting super score is

selected. HPCA resolves this problem. As eigenvector corresponding to the largest eigen value in

SVD of XtX is used as a starting super score, it is very stable. Westerhuis et al. (1998) showed this

phenomenon with a Monte Carlo simulation. They compared two cases. The one is the case where

one of the blocks has strong direction. In such a case, super block has a strong relationship with the

block that has a strong direction; however, such a phenomenon did not happen when the directions

spread. Even though they proposed how to manage the case in which there are multiblocks, their

propositions were only algorithmic and not based on the theoretical backgrounds. For that reason

it is critical to manage the case there are multiblocks based on theoretical backgrounds.

APPENDIX

Table A.1. The score vectors of X, Y and Z variables

brands
Score vectors of X Score vectors of Y Score vectors of Z

score 1 score 2 score 1 score 2 score 1 score 2

1 0.3663 0.7626 0.1382 0.2940 −0.0386 0.5458

2 −1.5049 −0.5742 −0.2576 −0.5636 −0.7304 0.0853
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3 −0.0475 0.3127 −0.6010 −0.9593 0.8076 −0.1807
4 3.7787 −0.2848 2.0303 0.1928 0.4720 0.2237

5 0.3323 0.0015 0.3642 −0.0843 0.2829 0.0450

6 −2.1816 −0.2820 −1.1128 −0.7887 −0.4496 −0.0337
7 −3.9001 0.7524 −1.6992 −0.2733 −0.3462 −0.1066
8 2.9320 0.1882 0.6982 0.1934 −0.6932 0.2829

9 −1.8412 0.5180 −0.2684 0.2503 −0.1817 −0.2439
10 1.9234 0.8354 0.9680 1.3497 −0.2317 0.6050

11 −0.7746 0.6578 0.2284 −0.6854 −0.2028 −0.1294
12 −1.0193 0.9393 −0.2774 1.1170 −0.2266 0.6583

13 −1.5944 0.8734 −0.3145 −0.6073 −0.5303 0.0840

14 0.9663 −1.8595 −1.4687 −1.1255 3.9477 −0.4441
15 1.0174 −0.2982 −0.4900 −0.6907 −0.4608 −0.1471
16 1.3862 −0.3349 0.0208 −0.3007 0.3169 0.0055

17 1.6034 −0.5492 0.8091 0.3806 −0.3163 0.2421

18 −0.8669 0.9461 −0.5261 −0.3285 −0.2333 0.2086

19 −1.4766 1.0658 −0.5795 0.0276 −0.5132 0.4340

20 1.0762 −0.1999 −0.1703 −0.5840 −0.1187 0.0082

21 −2.2115 0.8274 −0.7113 −0.0740 0.0733 0.0170

22 4.5771 −0.7649 0.6452 −2.5679 −0.9690 0.6866

23 0.8801 1.1975 −0.0922 −0.2031 2.6345 −0.4476
24 4.5622 0.5207 4.5172 0.2437 −0.2055 0.1910

25 1.1036 −0.3842 0.3100 −0.7643 0.6410 0.0478

26 5.1196 −1.9178 0.6525 −0.6194 0.6151 0.4882

27 1.4711 0.5784 −1.3455 −0.0751 0.5769 −0.6795
28 11.1261 −1.3570 4.0081 0.3572 0.9204 0.3958

29 −0.8320 1.8618 −3.6641 0.4927 0.8192 −0.1000
30 −4.6295 −3.1900 −3.9764 0.5589 −1.5881 −1.9237
31 0.6215 −0.2972 −0.1072 −0.9680 −0.3520 −0.1209
32 0.0770 0.8914 2.9164 2.4799 −1.8673 0.9065

33 −0.9141 1.0553 −0.2314 0.5575 −0.2459 0.0791

34 10.8824 −0.9269 6.4360 −0.4241 0.6360 0.4529

35 1.3115 −0.5174 −0.0967 −0.5627 1.3280 −0.1548
36 −1.3781 3.8311 0.2725 3.1535 −0.7308 1.4949

37 −3.8860 1.7445 −1.5129 0.1192 −0.5286 0.0388

38 −0.8294 1.1516 0.0747 0.7010 0.6766 0.5670

39 −1.6542 2.8625 −0.1657 2.5099 −0.5889 0.5496

40 −0.0649 −0.5287 −0.0068 −0.1310 −1.0133 −0.1690
41 −1.8691 0.1519 −1.1821 −0.7897 0.2352 −0.7687
42 −1.3182 0.1399 −0.5429 2.2391 0.0480 −0.3953
43 −1.7102 −0.0751 1.2909 −0.5829 −1.1701 0.0934

44 4.0603 −2.0520 0.9010 0.7748 −0.6845 −0.2508
45 −1.5126 −0.8532 1.3843 −1.0048 −1.9323 −1.5297
46 −13.6603 −4.4101 −6.2431 −2.6579 −2.1269 −3.6249
47 −6.0768 −1.5931 −2.8835 −1.0332 1.7277 −0.6202
48 −1.7975 −0.6652 −0.9722 0.0797 −1.0814 −0.0519
49 −1.9704 4.6466 −4.5104 2.9712 −0.9774 3.2727

50 0.3472 −5.3985 7.3437 −1.5943 4.5763 −0.5874
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Table A.2. The loading vectors of X variables

variables
Loading vectors of X variables

dimension 1 dimension 2

X1 −4.500 −0.356
X2 −3.434 0.753

X3 −5.216 2.075

X4 −3.102 −3.936
X5 −5.682 −1.347
X6 −1.855 −3.918
X7 −2.709 2.510

X8 −4.565 −2.077
X9 0.667 1.390

X10 −3.478 1.313

X11 −4.403 −0.701
X12 −3.153 1.593

X13 −4.727 1.794

X14 −4.185 −2.296
X15 −3.669 −4.747
X16 −5.782 −1.041
X17 −1.105 2.641

X18 −4.838 2.121

X19 −3.821 0.436

X20 −1.097 −1.922
X21 −4.234 −0.553
X22 −2.398 −2.810
X23 −2.961 −1.044
X24 −3.731 0.538

X25 −5.644 1.379

X26 −5.366 −0.750
X27 −3.497 −3.036
X28 −4.655 −2.421
X29 −3.931 −3.130
X30 −4.953 1.001

X31 −3.495 0.127

X32 −6.220 0.595

X33 −4.165 −0.169
X34 −5.795 −0.653

Table A.3. The loading vectors of Y variables

variables
Loading vectors of Y variables

dimension 1 dimension 2

Y 1 −4.031 0.806

Y 2 −5.798 1.714

Y 3 −4.287 3.754

Y 4 −1.191 −5.462
Y 5 −4.231 −1.886
Y 6 −2.769 −2.584
Y 7 −4.258 2.400

Y 8 −4.482 0.209

Y 9 −5.196 0.291

Y 10 −5.001 −1.297
Y 11 −5.241 −3.122



Generalization of Quantification for PLS Correlation 237

Table A.4. The loading vectors of Z variables

variables
Loading vectors of Z variables

dimension 1 dimension 2

Z1 6.505 2.183

Z2 6.413 1.458

Z3 5.763 −3.565
Z4 5.939 −1.301
Z5 6.301 −1.789
Z6 5.396 −3.529
Z7 6.210 −2.709
Z8 6.155 −1.699
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