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Abstract 
 

In this paper, an adaptive sparse singular value decomposition (ASSVD) algorithm is 
proposed to estimate the signal matrix when only one data matrix is observed and there is 
high dimensional white noise, in which we assume that the signal matrix is low-rank and has 
sparse singular vectors, i.e. it is a simultaneously low-rank and sparse matrix. It is a 
structured matrix since the non-zero entries are confined on some small blocks. The 
proposed algorithm estimates the singular values and vectors separable by exploring the 
structure of singular vectors, in which the recent developments in Random Matrix Theory 
known as anisotropic Marchenko-Pastur law are used. And then we prove that when the 
signal is strong in the sense that the signal to noise ratio is above some threshold, our 
estimator is consistent and outperforms over many state-of-the-art algorithms. Moreover, our 
estimator is adaptive to the data set and does not require the variance of the noise to be 
known or estimated. Numerical simulations indicate that ASSVD still works well when the 
signal matrix is not very sparse. 
 
 
Keywords: Matrix denoising, random matrix theory, adaptive sparse singular value 
decomposition (ASSVD), anisotropic Marchenko-Pastur law. 
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1. Introduction 

Matrix denoising is important in many scientific endeavors, such as the data cleansing of 
big data, image processing, information security and so on [1-3]. Consider that we can 
observe a 𝑝𝑝 × 𝑛𝑛 signal-plus-noise matrix 

𝑆̃𝑆 = 𝑆𝑆 + 𝑍𝑍,                               (1)                                                                         
where 𝑆𝑆 is the true signal matrix and 𝑍𝑍 is the noise matrix. In the classic setting when the 
dimension of data is much smaller than the sample size, the truncated singular value 
decomposition (TSVD) [4] is the default technique for estimating 𝑆𝑆 from 𝑆̃𝑆. Two popular 
methods, for choosing the truncation level, are soft-thresholding [6] and hard-thresholding 
[7]. 

The advance of technology has led to high dimensional data set whose dimensionality 
diverges with sample size 𝑛𝑛. In this regime, the classic multivariate analysis [8] lose its 
validity and Random Matrix Theory (RMT) [9] serves as a powerful technical tool. In this 
paper, we study the high dimensional data set when 𝑝𝑝 is comparable to 𝑛𝑛, i.e. there exists 
some small constant 𝜏𝜏 > 0 such that 

𝜏𝜏 ≤ 𝑐𝑐𝑛𝑛 ≤ 𝜏𝜏−1,  𝑐𝑐𝑛𝑛: = 𝑝𝑝
𝑛𝑛

.                           (2)                                                     

It is remarkable that, unlike the standard results in RMT [10], we only require the 
boundedness of 𝐶𝐶𝑛𝑛 instead of the convergence. This makes our algorithm more adaptive to 
test data set. 

In this paper, we consider the estimation of 𝑆𝑆 from its noisy estimation 𝑆̃𝑆 in the high 
dimensional setting when (eq.2) holds. A popular and practical assumption on 𝑆𝑆  is 
simultaneously low rank and sparse in the sense that 𝑆𝑆 has a finite number of nonzero 
singular values and sparse singular vectors. This type of data set is commonly encountered in 
many scientific disciplines [11-13]. A typical example is from the study of gene expression 
data. An microarray experiment typically assesses a large number of DNA sequences (genes, 
cDNA clones, or expressed sequence tags) under multiple conditions. The gene expression 
data in an microarray experiment can be represented by a real-valued expression matrix 𝑆𝑆, 
where the rows of 𝑆𝑆 correspond to the expression pattern of genes (e.g. cancer patient) and 
column correspond to the gene levels. A subset of gene patterns can be clustered together as 
a subtype of the same pattern, which in turn is determined by a subset of genes. The original 
gene expression matrix obtained from a scanning process contains noise, missing values, and 
systematic variations arising from the experimental procedure. Therefore, our discussion 
here provides an ideal model for the gene expression data. 

In the literature of low-rank matrix estimation, nuclear norm minimization (NNM) [14,15] 
are proved to be useful. However, since we have sparse structure here, we expect to obtain 
better estimate. To handle this issue, one research line is to add more regularization items for 
optimization other than the nuclear norm, for instance 𝑙𝑙1 penalty, to capture the structure of 
sparsity [16,17]. The other research line is to apply the two-way iterative thresholding 
method [12] to iteratively explore the low-rank and sparse structure of 𝑆𝑆. However, in [12], 
we need to estimate the variance of noise based on prior information which is usually very 
difficult in practice. 

In the present paper, we assume that 𝑆𝑆 has sparse structure in the sense that its singular 
vectors are sparse. As a consequence, the nonzero entries of 𝑆𝑆 are confined on some small 
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blocks and hence 𝑆𝑆  is highly structured. In Fig. 1, we illustrate this property using 
simulated synthetic data set. It can be seen that the non-zero entries are confined on some 
blocks of small sizes. 

 
Fig. 1. Synthetic data set. Left panel is the image of S, whereas right panel is 𝑆̃𝑆. 𝑆𝑆 is a rank-two 
matrix and its singular vectors have only 10% non-zero entries. 𝑍𝑍 is a random Gaussian matrix 

with unit variance. 
 

For this type of data set, instead of investigating the sparse structure of 𝑆𝑆, the best 
solution is to explore the structure of the singular vectors, i.e. the positions of the non-zero 
entries. However, none of the existing methods explore the structure of singular vectors 
directly. 

In this paper, we propose the ASSVD to estimate the singular values and vectors, 
separately. ASSVD will explore the positions of non-zero entries of the singular vectors 
directly. From the point of matrix decomposition, our method is rather straightforward and 
provide the estimates of singular values and vectors. Moreover, with the recent technical 
inputs from [5], we do not need to estimate the variance of the noise. We also prove that our 
ASSVD gives a consistent estimator when the 𝑆𝑆 is strong (see Assumption 5 below). 
Numerical simulations show that ASSVD outperforms over many state-of-the-art algorithms 
even when the 𝑆𝑆 is neither strong nor sparse. 

We point out similar problems have been studied in [5] when the noise variance is one 
(known). Our ASSVD can deal with general noise situation without estimating the noise 
variance. Moreover, in this paper, we propose a novel adaptive estimator for the singular 
values. This estimator only uses the singular values of 𝑆̃𝑆. 

The contributions of this paper can be summarized as follows: 

• We propose ASSVD, an adaptive and simple algorithm that enables the estimation of a 
simultaneously low-rank and sparse matrix in presence of high dimensional noise. Our 
ASSVD does not need to estimate the variance of noise and is adaptive to the data 
matrix. 

• We theoretically and numerically prove that ASSVD can well estimate the high 
dimensional data matrix and outperforms over many state-of-the-art algorithms. 

• As a byproducts, ASSVD produces estimates for the singular values and vectors. Such 
results can be of independent interest. 
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The rest of this paper is organized as follows. In Section 2, we introduce the main 
assumptions and the proposed ASSVD. In Section 3, we design Monte-Carlo simulations to 
illustrate the use of ASSVD and compare with some state-of-the-art algorithms. In Section 4, 
we prove the theoretical properties of ASSVD. Finally, we summarize in Section 5.  

2. Adaptive matrix denoising 

In this section, we introduce the main assumptions will be used throughout the paper and 
then the algorithm: ASSVD. 

2.1 Main assumptions 

We assume that the entries of the white noise matrix 𝑍𝑍 = (𝑧𝑧𝑖𝑖𝑖𝑖) are i.i.d random variables 
such that 

𝔼𝔼𝑧𝑧𝑖𝑖𝑖𝑖 = 0,  𝔼𝔼𝑧𝑧𝑖𝑖𝑖𝑖2 = 𝜎𝜎2

𝑛𝑛
.                               (3) 

and the noise variance is bounded, i.e 

𝜎𝜎 < ∞.                                     (4) 

Moreover, there exists a large constant 𝐶𝐶 > 0 for 𝑘𝑘 ≤ 𝐶𝐶, a constant 𝜇𝜇𝑘𝑘 > 0,which makes 

𝔼𝔼|√𝑛𝑛𝑧𝑧𝑖𝑖𝑖𝑖|𝑘𝑘 ≤ 𝜇𝜇𝑘𝑘 ,  3 ≤ 𝑘𝑘 ≤ 𝐶𝐶.                            (5) 

Denote the singular value decomposition of 𝑆𝑆 as 

𝑆𝑆 = ∑ 𝑑𝑑𝑖𝑖𝑟𝑟
𝑖𝑖=1 𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖T,  𝑑𝑑1 > 𝑑𝑑2 > ⋯ > 𝑑𝑑𝑟𝑟 ,                       (6) 

where 𝑟𝑟 > 0 is a fixed integer, 𝑑𝑑𝑖𝑖 , 𝑢𝑢𝑖𝑖  and 𝑣𝑣𝑖𝑖  are the singular values, left and right 
singular vectors of 𝑆𝑆, respectively. We assume that 

0 < 𝑑𝑑𝑖𝑖 < ∞,  1 ≤ 𝑖𝑖 ≤ 𝑟𝑟.                             (7) 

Moreover, we assume that 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 are sparse. Specifically, let 𝑚𝑚𝑢𝑢
𝑖𝑖  and 𝑚𝑚𝑣𝑣

𝑖𝑖  be the number 
of non-zero entries of 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 , respectively. Denote 

𝑤𝑤 = max
1≤𝑖𝑖≤𝑟𝑟

�𝑚𝑚𝑢𝑢
𝑖𝑖 ,𝑚𝑚𝑣𝑣

𝑖𝑖 �. 

then assume that there exists some constant 𝐶𝐶1 > 0 such that 

𝑤𝑤 ≤ 𝐶𝐶1.                                    (8) 

In light of (2), we define the sparsity level of 𝑆𝑆 as 

𝑠𝑠 =
𝑤𝑤
𝑛𝑛

. 

We conclude from (8) that 𝑠𝑠 → 0 when 𝑛𝑛 → ∞. 

For future reference, we summarize the assumptions of the present paper. 
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Assumption 1.  For the model (1), we assume that (2), (3), (4), (5]), (6), (7) and (8) hold 
true. 

2.2 Adaptive spare singular value decomposition (ASSVD) 

We now introduce our algorithm, ASSVD. As mentioned in Section 1, our algorithm 
estimates the singular values and vectors, separately. 

 
 

We first introduce some notations. Denote the eigenvalues and eigenvectors of 𝑆̃𝑆 𝑆̃𝑆T as 
𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑝𝑝 and 𝑢̃𝑢1 ,⋯ , 𝑢̃𝑢𝑝𝑝, respectively. Similarly, we define the eigenvalues and 
eigenvectors of 𝑆̃𝑆T 𝑆̃𝑆  as 𝜇𝜇1 ≥ 𝜇𝜇2 ≥ ⋯ ≥ 𝜇𝜇𝑛𝑛  and 𝑣̃𝑣1 ,⋯ , 𝑣̃𝑣𝑛𝑛,  respectively. Since 𝑆̃𝑆 𝑆̃𝑆𝑇𝑇  and 
𝑆̃𝑆T 𝑆̃𝑆 have the same non-zero eigenvalues, in order not to cause confusion, we define them as 
𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑝𝑝∧𝑛𝑛,  𝑝𝑝 ∧ 𝑛𝑛 = min{𝑝𝑝,𝑛𝑛} . Note that {𝑢̃𝑢𝑖𝑖}  and {𝑣̃𝑣𝑖𝑖}  are the left and right 
singular vectors of 𝑆̃𝑆, respectively. We next make it precise of the strong signal. 

Definition 2. For 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟, we say 𝑑𝑑𝑖𝑖 is a strong signal if 
𝑑𝑑𝑖𝑖
𝜎𝜎

> 𝑐𝑐𝑛𝑛
1/4 + 𝜅𝜅, 
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where 𝜅𝜅 is a fixed small constant. 
Next, we define some statistics. For a given parameter 𝑞𝑞 and when 𝑖𝑖 ≤ 𝑞𝑞, denote 

𝑚̂𝑚1 (𝜆𝜆𝑖𝑖) =
1
𝑝𝑝
�

1
𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑗𝑗

𝑝𝑝

𝑗𝑗=𝑞𝑞+1

,   𝑚̂𝑚2 (𝜆𝜆𝑖𝑖) =
1
𝑛𝑛
�

1
𝜆𝜆𝑖𝑖 − 𝜇𝜇𝑗𝑗

𝑝𝑝

𝑗𝑗=𝑞𝑞+1

. 

It will seen later that 𝑞𝑞 is used to estimate the number of strong signals and we refer it as 
the rank estimate. Its definition and construction will be discussed in Section 2.3. Armed 
with the above preparation, we introduce ASSVD as Algorithm 1. 

Remark 3. First of all, from the above procedure, when 𝑑𝑑𝑖𝑖 is a strong signal satisfying 
Definition 2, we conclude that 𝑑̂𝑑𝑖𝑖 , 𝑢̂𝑢𝑖𝑖  and 𝑣̂𝑣𝑖𝑖  are the estimates of 𝑑𝑑𝑖𝑖 ,𝑢𝑢𝑖𝑖  and 𝑣𝑣𝑖𝑖 , 
respectively. Secondly, our ASSVD is adaptive to our data matrix only and we do not need to 
estimate the variance of the noise. 

2.3 Choice of parameter   
As we have seen from the ASSVD algorithm, the number of strong signals of 𝑆𝑆 needed to 
be estimated separately using the parameter 𝑞𝑞. In this paper, we employ the resampling 
procedure [21] to choose 𝑞𝑞. The main idea behind the construction is to use the information 
of magnitude of singular values of 𝑆̃𝑆. Heuristically, as we can see from Theorem 6 later, if 
𝑑𝑑𝑖𝑖 ,  𝑑𝑑𝑖𝑖+1  are both strong signals, then the ratio of their corresponding singular values 
𝜆𝜆𝑖𝑖/𝜆𝜆𝑖𝑖+1 will be well-separate from one. On the other hand, if both of them are weak signals 
in the sense that Definition 2 fails, their ratios will be close to one. Hence, there exists a 
transition point for the ratio of consecutive singular values of 𝑆̃𝑆 and this happens between 
the 𝑞𝑞-th and (𝑞𝑞 + 1)-th singular values, which information will be used to construct the 
statistic. 
Remark 4. It can conclude from the above algorithm that with probability 𝛽𝛽 (say 𝛽𝛽 = 0.98), 
𝑞𝑞 will be a reasonably statistic for the number of strong signals. The 𝜍𝜍 is chosen to make 
precise of being far away from one. 
 

Table 1. Estimate of singular values 𝑑𝑑1 = 10 using (10). We report the averaged estimate over 104 
simulations.  

𝜎𝜎/(𝑝𝑝,𝑛𝑛) (100, 200) (200, 400) (300, 400) (400, 300)  
1 9.8 9.83 9.9 10.12  
2 9.6 10.13 9.96 9.82  
3 9.45 10.05 9.86 9.87  
4 9.83 9.65 9.88 10.51  
5 9.35 10.76 9.93 10.56  

 

3. Simulations 

3.1 Performance of the estimates 𝒅̂𝒅𝒊𝒊 , 𝒖̂𝒖𝒊𝒊 and 𝒗̂𝒗𝒊𝒊 
As mentioned before, ASSVD estimates the singular values and vectors separately. We first 
study the performance of such estimators using a rank-two example under various noise level 
when Assumption 5 holds. To generate sparse singular vectors, we use the R package 
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R1magic. The noise matrix is chosen to be a random Gaussian matrix generated from the R 
package mvtnorm. In the simulations below, we set 

𝑆𝑆 = 𝑑𝑑1𝑢𝑢1𝑣𝑣1T + 𝑑𝑑2𝑢𝑢2𝑣𝑣2T. 

Here 𝑢𝑢𝑖𝑖 ∈ ℝ𝑝𝑝,  𝑣𝑣𝑖𝑖 ∈ ℝ𝑛𝑛, 𝑖𝑖 = 1,2  are generated using R1magic with 𝑠𝑠 = 0.1  and 𝑢𝑢1 ⊥
𝑢𝑢2, 𝑣𝑣1 ⊥ 𝑣𝑣2 with 𝑑𝑑1 = 10,𝑑𝑑2 = 7. In Table 1, we report the estimation of 𝑑𝑑1 using (9) for a 
variety choices of noise levels and combinations (𝑝𝑝,𝑛𝑛). It can be seen that we estimator is 
robust against all such combinations.  

Next, we consider the accuracy of the estimation for singular vectors. We report the results 
of the left and right singular vectors for a fixed noise level in Fig. 2 and 3 respectively. It can 
be seen that our estimate is quite accurate. 

 
Fig. 2. Estimation of left singular subspace for σ = 2, p = 200, n = 400. Left panel is the true subspace 

whereras right panel is the estimated subspace. 

 
Fig. 3. Estimation of right singular subspace for σ = 2, p = 200, n = 400. Left panel is the true 

subspace whereras right panel is the estimated subspace. 

 

3.2 Comparison with other algorithms 

In this section, we compare ASSVD with some state-of-the-art algorithms. Specifically, we 
compare with the sparse singular value decomposition (SSVD) in [12], the nuclear norm 
minimization with 𝑙𝑙1 penalty [16] (NSNM), optimal shrinkage of singular values (OSSVD) 
in [18], shrinkage estimates (OptShrink) in [19] and the truncated SVD (TSVD). For the 
implementation of SSVD, we use an R package ssvd contributed by the first author of [12]. 
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For the shrinkage estimates in [18, 19], the Matlab codes can be found on the author’s 
websites. 

 
 
Table 2. Comparison of different algorithms using Frobenius norm. We record the estimation errors 
for different methods averaged over 104 simulations. We highlight the smallest error terms. 
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First of all, we study the performance of various methods for a fixed noise level 𝜎𝜎 = 1. We 
use the same setup as in Section 3 by varying the sparsity level 𝑠𝑠 between 0.05 and 0.45. It 
can be concluded from Table 2 that: (i). ASSVD outperforms the other algorithms at all 
levels of sparsity and combinations of 𝑝𝑝 and 𝑛𝑛; (ii). Even though we assume (8) and 
subsequently 𝑠𝑠 → 0 asymptotically, numerical simulations indicate that our estimation is 
still reasonable accurate when 𝑆𝑆 is not very sparse; (iii). TSVD has the worst performance 
and becomes worse with the increase of dimension; but it is stable under sparsity variation; 
(iv). SSVD has stable and smaller errors at all sparsity levels. However, we will show later 
that it will become worse (as indicated in when 𝑑𝑑1,𝑑𝑑2 increases); (v). The penalty method 
becomes worse when the sparsity level increases. 

We mention that, in this setting, both 𝑑𝑑1 and 𝑑𝑑2 are strong signals. 

4 Theoretical properties 

In this section, we state the main statistical properties of ASSVD. The key ingredients for 
our paper are the convergence limits and rates for the singular values and vectors. 

4.1 Convergence of singular values and vectors of 𝑺̃𝑺 
In [5], the author computed the convergence limits and rates for the singular values and 
vectors when 𝜎𝜎2 = 1. We extend the results for general noise level 𝜎𝜎. 

𝜃𝜃(𝑑𝑑): =
(𝑑𝑑2 + 𝜎𝜎2)(𝑑𝑑2 + 𝑐𝑐𝑛𝑛𝜎𝜎2)

𝑑𝑑2
, 

and 

𝑎𝑎1(𝑑𝑑): =
𝑑𝑑4 − 𝑐𝑐𝑛𝑛

𝑑𝑑2(𝑑𝑑2 + 𝑐𝑐𝑛𝑛)
,  𝑎𝑎2(𝑑𝑑) =

𝑑𝑑4 − 𝑐𝑐𝑛𝑛
𝑑𝑑2(𝑑𝑑2 + 1)

. 

We next introduce the assumptions on the strength of the signals 𝑑𝑑𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟. 

Assumption 5. Suppose that for some 1 ≤ 𝑟𝑟+ ≤ 𝑟𝑟 and some small constant 𝜅𝜅 > 0, we have 

𝑑𝑑𝑖𝑖 > 𝜎𝜎𝑑𝑑𝑛𝑛
1/4 + 𝜅𝜅,  |𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑗𝑗| ≥ 𝜅𝜅,  1 ≤ 𝑖𝑖 ≠ 𝑗𝑗 ≤ 𝑟𝑟+. 

Moreover, when 𝑟𝑟+ + 1 ≤ 𝑘𝑘 ≤ 𝑟𝑟, we assume 

𝑑𝑑𝑘𝑘 < 𝜎𝜎𝑐𝑐𝑛𝑛
1/4. 

We next state the results for the singular values and vectors. 

Theorem 6. We suppose that Assumptions 1 and 5 hold true. For any given small 𝜖𝜖 > 0, 
there exists a large constant 𝐷𝐷 ≡ 𝐷𝐷(𝜖𝜖) > 0,  such that for sufficiently large 𝑛𝑛,  with 
probability at least 1 − 𝑛𝑛−𝐷𝐷, we have 

|𝜆𝜆𝑖𝑖 − 𝜃𝜃(𝑑𝑑𝑖𝑖)| ≤ 𝑛𝑛−1/2+𝜖𝜖,  1 ≤ 𝑖𝑖 ≤ 𝑟𝑟+,                         (11) 

and 

�⟨𝑢𝑢𝑗𝑗 , 𝑢̃𝑢𝑖𝑖⟩2 − 𝛿𝛿𝑖𝑖𝑖𝑖𝑎𝑎1(𝑑𝑑𝑖𝑖)� ≤ (𝛿𝛿𝑖𝑖𝑖𝑖𝑛𝑛−1/2+𝜖𝜖 + 𝑛𝑛−1+𝜖𝜖), 
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�⟨𝑣𝑣𝑗𝑗 , 𝑣̃𝑣𝑖𝑖⟩2 − 𝛿𝛿𝑖𝑖𝑖𝑖𝑎𝑎2(𝑑𝑑𝑖𝑖)� ≤ (𝛿𝛿𝑖𝑖𝑖𝑖𝑛𝑛−1/2+𝜖𝜖 + 𝑛𝑛−1+𝜖𝜖), 

where 𝛿𝛿𝑖𝑖𝑖𝑖 = 1 when 𝑖𝑖 = 𝑗𝑗 and 𝛿𝛿𝑖𝑖𝑖𝑖 = 0 otherwise. Furthermore, for 𝑟𝑟+ + 1 ≤ 𝑘𝑘 ≤ 𝑟𝑟, we 
have 

|𝜆𝜆𝑘𝑘 − 𝜎𝜎2(1 + 𝑑𝑑𝑛𝑛
1/2)2| ≤ 𝑛𝑛−2/3+𝜖𝜖, 

and 

⟨𝑢𝑢𝑙𝑙 , 𝑢̃𝑢𝑘𝑘⟩2 ≤ 𝑛𝑛−1+𝜖𝜖, ⟨𝑣𝑣𝑙𝑙 , 𝑣̃𝑣𝑘𝑘⟩2 ≤ 𝑛𝑛−1+𝜖𝜖,  1 ≤ 𝑙𝑙 ≤ 𝑟𝑟. 

Proof. Denote 𝑆̃𝑆1 = 𝑆̃𝑆 /𝜎𝜎, 𝑆𝑆1 = 𝑆𝑆/𝜎𝜎 and 𝑍𝑍1 = 𝑍𝑍/𝜎𝜎. The results for the model 

𝑆̃𝑆1 = 𝑆𝑆1 + 𝑍𝑍1, 

have been established in [Section 2 Theorem 2.2 and 2.3]. Note that 𝑆̃𝑆1 and 𝑆̃𝑆 have the 
same singular vectors and 𝜆𝜆(𝑆̃𝑆) = 𝜎𝜎𝜎𝜎(𝑆̃𝑆1). We can therefore conclude the proof using 
[Section 2 Theorem 2.2 and 2.3]. 

We remark that the almost surely convergence results have been established in [20] using 
Free Probability Theory. We provide convergent rates in the above theorems. 

4.2 Convergence of the estimator 𝑺̂𝑺𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 
With the preparation of Theorem 6, we next establish the properties of our estimator 𝑆̂𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
under Frobenius norm. Recall (10). 

Theorem 7. Suppose that Assumptions 1 and 5 hold true. Then for some small constant 
𝜖𝜖 > 0, there exists a large constant 𝐷𝐷 ≡ 𝐷𝐷(𝜖𝜖) > 0, such that for a sufficiently large 𝑛𝑛, with 
probability at least 1 − 𝑛𝑛−𝐷𝐷, we have 

��𝑆𝑆 − 𝑆̂𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎��
𝐹𝐹
≤ 𝑛𝑛−1/2+𝜖𝜖 + � � 𝑑𝑑𝑖𝑖2

𝑟𝑟

𝑖𝑖=𝑟𝑟++1

. 

Proof. We decompose 𝑆𝑆 = 𝑆𝑆𝑜𝑜 + 𝑆𝑆𝑏𝑏, where 

𝑆𝑆𝑜𝑜 = �𝑑𝑑𝑖𝑖

𝑟𝑟+

𝑖𝑖=1

𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖T, 𝑆𝑆𝑏𝑏 = � 𝑑𝑑𝑖𝑖

𝑟𝑟

𝑖𝑖=𝑟𝑟++1

𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖T. 

It is easy to see that 

��𝑆𝑆 − 𝑆̂𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎��
𝐹𝐹
≤ ��𝑆𝑆𝑜𝑜 − 𝑆̂𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎��

𝐹𝐹
+ � � 𝑑𝑑𝑖𝑖2

𝑟𝑟

𝑖𝑖=𝑟𝑟++1

. 

From the proof of  [2, Theorem 3.4] (see equation (5) there), we find that with probability 
at least 1 − 𝑛𝑛−𝐷𝐷 
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��𝑆𝑆𝑜𝑜 − 𝑆̂𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎��
𝐹𝐹

2
≤ 𝑛𝑛−1+2𝜖𝜖 + 2�(

𝑟𝑟+

𝑖𝑖=1

𝑑̂𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖)2. 

Moreover, by [2, Proposition 3.3], we find that 𝑞𝑞 = 𝑟𝑟+ with probability at least 1 − 𝑛𝑛−𝐷𝐷. 
Therefore, the proof follows from the following lemma and its proof can be found in the 
appendix. 

Lemma 8.  Recall the estimate 𝑑̂𝑑𝑖𝑖 in (9). Assume the assumptions of Theorem 7 holds. 
Then with probability at least 1 − 𝑛𝑛−𝐷𝐷, we have 

| 𝑑̂𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖| ≤ 𝑛𝑛−1/2+𝜖𝜖,  𝑖𝑖 ≤ 𝑟𝑟+. 

We conclude from Theorem 7 that when 𝑟𝑟+ = 𝑟𝑟, i.e. all signals are strong, ASSVD can 
provide us a consistent estimator. However, in this situation, the shrinkage algorithms 
(OSSVD [18] and OptShrink [19]) obtain bound 

��𝑑𝑑𝑖𝑖2
𝑟𝑟

𝑖𝑖=1

(1− 𝑎𝑎1(𝑑𝑑𝑖𝑖)𝑎𝑎2(𝑑𝑑𝑖𝑖)) > 0 

since 0 < 𝑎𝑎1(𝑑𝑑𝑖𝑖),𝑎𝑎2(𝑑𝑑𝑖𝑖) < 1. 

For the iterative thresholding method SSVD , even though we theoretically have the same 
rate with them, numerically simulations show better performance than them. Moreover, since 
our algorithm does not involve any iterations, ASSVD is more simple and fast in the 
implementation. 

For the penalty method, there does not exist any literature on proving the optimal bounds. 
However, as we can see from the mini-max bound in [17] that it will be bounded by the 
nuclear norm, which is strictly positive. 

5. Conclusions and discussions 

In this paper, we study the problem of estimating a simultaneously low-rank and sparse 
matrix from a high dimensional noisy observation. We propose an efficient algorithm, 
adaptive sparse singular value decomposition (ASSVD), by exploring the structure of the 
singular values and vectors. The inputs of ASSVD are based on recent developments in 
Random Matrix Theory. An main advantage is that we do not need to estimate the variance 
of the noise.Theoretical analysis shows that ASSVD outperforms over many existing 
methods. Extensive experimental results demonstrate the efficiency and efficacy of our 
proposed method. Moreover, ASSVD still works very well even when the data matrix is not 
very sparse. One future direction is to generalize this idea to incorporate high dimensional 
heteroskedastic noise. It is also very interesting to explore the situation when the rank of  𝑆𝑆 
diverges with 𝑛𝑛. 
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Appendix 

In this appendix, we first summarize the recent results of Random Matrix Theory, the 
anisotropic local laws in [22]. Then we prove Lemma 8. 

We investigate the spectrum properties of 𝑍𝑍𝑍𝑍T and 𝑍𝑍T𝑍𝑍 provided Assumption 1 holds. For 
any symmetric 𝑛𝑛 × 𝑛𝑛 matrix 𝐻𝐻, the empirical spectral distribution (ESD) is defined as 

𝜇𝜇𝐻𝐻 =
1
𝑛𝑛
�𝛿𝛿𝜆𝜆𝑖𝑖(𝐻𝐻)

𝑛𝑛

𝑖𝑖=1

, 

where 𝛿𝛿(⋅)  is the standard Dirac-Delta function. For any probability measure 𝜇𝜇  and 
complex value 𝑧𝑧 ∈ ℂ+, we denote the Stieltjes transform as 

𝑚𝑚𝜇𝜇(𝑧𝑧) = ∫
1

𝑥𝑥 − 𝑧𝑧
𝜇𝜇(𝑑𝑑𝑑𝑑). 

It is well-known that the limiting spectral distribution of 1
𝜎𝜎2
𝑍𝑍𝑍𝑍T  satisfies the 

Marchenko-Pastur (MP) law denoted as 

𝜇𝜇𝑚𝑚𝑚𝑚(𝐼𝐼) = max{1− 𝑐𝑐, 0}𝟏𝟏0∈𝐼𝐼 + 𝜈𝜈(𝐼𝐼), 

where 𝐼𝐼 ⊂ ℝ is a measurable set and 𝑑𝑑𝑑𝑑(𝑥𝑥) satisfies 

𝑑𝑑𝑑𝑑(𝑥𝑥) =
1

2𝜋𝜋
�(𝜆𝜆+ − 𝑥𝑥)(𝑥𝑥 − 𝜆𝜆−)

𝑐𝑐𝑛𝑛𝑥𝑥
𝑑𝑑𝑑𝑑,  𝜆𝜆± = (1 ± 𝑐𝑐𝑛𝑛

1/2)2. 

We denote the Stieltjes transform of the MP law as 𝑚𝑚1(𝑧𝑧). Similar results hold for 1
𝜎𝜎2
𝑍𝑍T𝑍𝑍 

and we denote its Stieltjes transform as 𝑚𝑚2(𝑧𝑧). 

To study each individual eigenvalue, we need the local MP law. Denote the spectral 
parameter set as 

S: = {𝑧𝑧 = 𝐸𝐸 + i𝜂𝜂 ∈ ℂ:  𝜆𝜆+ < 𝐸𝐸 ≤ ∞, 𝜂𝜂 ≥ 0}. 

The Stieltjes transforms of ESDs of 𝜎𝜎−2𝑍𝑍𝑍𝑍T and 𝜎𝜎−2𝑍𝑍T𝑍𝑍 are defined as 

𝑚𝑚1𝑛𝑛(𝑧𝑧) =
1
𝑝𝑝
�

1
𝜆𝜆𝑖𝑖 − 𝑧𝑧

𝑝𝑝

𝑖𝑖=1

, 

and 

https://doi.org/10.1016/j.jmva.2014.02.017
https://doi.org/10.1007/s00440-016-0730-4
https://doi.org/10.1016/j.tcs.2018.05.004


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020                 2647 

𝑚𝑚2𝑛𝑛(𝑧𝑧) =
1
𝑛𝑛
�

1
𝜇𝜇𝑖𝑖 − 𝑧𝑧

𝑛𝑛

𝑖𝑖=1

. 

The local law states that 𝑚𝑚1𝑛𝑛(𝑧𝑧) and 𝑚𝑚2𝑛𝑛(𝑧𝑧) are close to those of 𝑚𝑚1(𝑧𝑧) and 𝑚𝑚2(𝑧𝑧), 
respectively. 

Lemma 10. Suppose Assumption 1 holds true. Then for some small 𝜖𝜖 > 0 and large 
𝐷𝐷 ≡ 𝐷𝐷(𝜖𝜖) > 0, we have 

sup
𝑧𝑧∈S

(|𝑚𝑚1𝑛𝑛(𝑧𝑧)−𝑚𝑚1(𝑧𝑧)| + |𝑚𝑚2𝑛𝑛(𝑧𝑧) −𝑚𝑚2(𝑧𝑧)|) ≤ 𝑛𝑛−1+𝜖𝜖. 

Armed with the above lemma, we now head to prove Lemma 8. 

From the proof of , we find that 

𝑓𝑓 �𝜃𝜃 �
𝑑𝑑
𝜎𝜎
�� = �

𝑑𝑑
𝜎𝜎
�
−2

,  𝑑𝑑 > 𝜎𝜎𝑐𝑐𝑛𝑛
1/4, 

where 𝑓𝑓(𝑥𝑥) is defined as 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑚𝑚1(𝑥𝑥)𝑚𝑚2(𝑥𝑥). 

Note that 𝑓𝑓(𝑥𝑥)  is a continuously differentiable function. Therefore, we have with 
probability at least 1 − 𝑛𝑛−𝐷𝐷 

|𝑓𝑓(𝜆𝜆𝑖𝑖/𝜎𝜎) − (𝑑𝑑/𝜎𝜎)−2| ≤ 𝑛𝑛−1/2+𝜖𝜖. 
 

 
 
 
  



2648                                    Ding et al.: ASSVD: Adaptive Sparse Singular Value Decomposition for 
High Dimensional Matrices 

Xiucai Ding is currently a research associate at Duke University, and he will become a 
tenure-track Assistant Professor in the Department of Statistics, University of California 
Davis in the fall of 2020. He received his M.S. degree from the Courant Institute of 
Mathematical Sciences, New York University, New York, U.S., in 2014 and Ph.D. degree 
from the University of Toronto, Toronto, Canada in 2018. His main research interests 
include random matrix theory with applications in statistics, manifold learning, machine 
learning and deep learning, non-stationary time series analysis and statistical optimal 
transport theory.   
 

 
Xianyi Chen received his PhD in Computer Science and Technology from Hunan 
University, China, in 2014. He is a visiting fellow of the Mathematics and Computer 
Science, The University of North Carolina at Pembroke, USA, in 2018-2019. He is 
currently a vice professor in the School of Computer and Software, Nanjing University of 
Information Science& Technology, China. His research interests include big data base 
information hiding, digital watermarking, cloud computing security and machine learning. 
 
 
 
 
Mengling Zou is a software engineering student of Nanjing University of information 
engineering, Nanjing, China, and she is a visiting scholar of Department of Computer 
Science, University of Drbrecen, Debrecen, in 2019.9-2020.1. Her research interests focus 
on reversible data hiding and reversible mage transformation. 
 
 
 
 
 

 
 
Guangxing Zhang received the M.S. degree from Chinese Academy of Sciences in 2011. 
Now, he is a software engineer at Nanjing Qisheng Cloud Information Technology Co., Ltd. 
His research interests mainly include remote sensing image processing and machine 
learning. 
 
 
 
 


