• Title/Summary/Keyword: Singular stiffness matrix

Search Result 13, Processing Time 0.025 seconds

Stiffness Analysis of Planar Parallel Manipulators with Serially Connected Legs (직렬체인 다리를 갖는 평면 병렬형 기구의 강성해석)

  • Kim, Han Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.164-172
    • /
    • 2014
  • This paper presents a method for analyzing the stiffness of full and low DOF (degree of freedom) planar parallel manipulators with serially connected legs. The individual stiffness of each leg is obtained by applying reciprocal screws to the leg twist using passive joints and elastic elements consisting of actuators and links. Because the legs are connected in parallel, the manipulator stiffness is determined by summing the individual leg stiffness values. This method does not require the assumption that springs should be located along reciprocal screws and is applicable to a planar parallel manipulator with a generic or singular configuration. The stiffness values of three planar parallel manipulators with different DOFs are analyzed. The numerical results are confirmed using ADAMS S/W.

Thermal Stresses in a Laminated Fiber-Reinforced Composite Containing an Interlaminar Crack Under a Uniform Heat Flow (층간균열이 존재하는 균일 열유동하의 섬유강화 적층복합재료의 열응력해석)

  • 최형집;오준성;이강용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.887-902
    • /
    • 1994
  • Within the framework of anisotropic thermoelasticity, the problem of an interlaminar crack in a laminated fiber-reinforced composite subjected to a uniform heat flow is investigated. Under a state of generalized plane deformation, dissimilar anisotropic half-spaces with different fiber orientations are considered to be bound together by a matrix interlayer containing the crack. The interlayer models the matrix-rich interlaminar region of the fibrous composite laminate. Based on the flexibility/stiffness matrix approach, formulation of the current crack problem results in having to solve two sets of singular integral equations for temperature and thermal stress analyses. Numerical results are obtained, illustrating the parametric effects of laminate stacking sequence, relative crack size, crack location, crack surface partial insulation, and fiber volume fraction on the values of mixed mode thermal stress intensity factors.

The eigensolutions of wave propagation for repetitive structures

  • Zhong, Wanxie;Williams, F.W.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.47-60
    • /
    • 1993
  • The eigen-equation of a wave traveling over repetitive structure is derived directly form the stiffness matrix formulation, in a form which can be used for the case of the cross stiffness submatrix $K_{ab}$ being singular. The weighted adjoint symplectic orthonormality relation is proved first. Then the general method of solution is derived, which can be used either to find all the eigensolutions, or to find the main eigensolutions for large scale problems.

The Problem of Collinear Cracks in a Layered Half-Plane with a Functionally Graded Nonhomogeneous Interfacial Zone (비균질 구배기능 계면영역을 고려한 적층 만무한체의 동일선상 복수균열 해석)

  • Jin, Tae-Eun;Choe, Hyung-Jip;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1275-1289
    • /
    • 1996
  • The plane elasticity problem of collinear cracks in a layered medium is investigated. The medium is modeled as bonded structure constituted from a surface layer and a semi-infinite substrate. Along the bond line between the two dissimilar homegeneous constituents, it is assumed that as interfacial zone having the functionally graded, nonhomogeneous elastic modulus exists. The layered medium contains three collinear cracks, one in each constituent material oriented perpendicular to the nominal interfaces. The stiffness matrix formulation is utilized and a set of homogeneous conditions relevant to the given problem is readily satisfied. The proposed mixed boundary value problem is then represented in the form of a system of integral equations with Cauchy-type singular kernels. The stress intensity factors are defined from the crack-tip stress fields possessing the standard square-root singular behavior. The resulting values of stress intensity factors mainly address the interactions among the cracks for various crack sizes and material combinations.

Determining the Size of a Hankel Matrix in Subspace System Identification for Estimating the Stiffness Matrix and Flexural Rigidities of a Shear Building (전단빌딩의 강성행렬 및 부재의 강성추정을 위한 부분공간 시스템 확인기법에서의 행켈행렬의 크기 결정)

  • Park, Seung-Keun;Park, Hyun Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.99-112
    • /
    • 2013
  • This paper presents a subspace system identification for estimating the stiffness matrix and flexural rigidities of a shear building. System matrices are estimated by LQ decomposition and singular value decomposition from an input-output Hankel matrix. The estimated system matrices are converted into a real coordinate through similarity transformation, and the stiffness matrix is estimated from the system matrices. The accuracy and the stability of an estimated stiffness matrix depend on the size of the associated Hankel matrix. The estimation error curve of the stiffness matrix is obtained with respect to the size of a Hankel matrix using a prior finite element model of a shear building. The sizes of the Hankel matrix, which are consistent with a target accuracy level, are chosen through this curve. Among these candidate sizes of the Hankel matrix, more proper one can be determined considering the computational cost of subspace identification. The stiffness matrix and flexural rigidities are estimated using the Hankel matrix with the candidate sizes. The validity of the proposed method is demonstrated through the numerical example of a five-story shear building model with and without damage.

Representation of Dynamic Stiffness Matrix with Orthogonal Polynomials (직교다항식을 이용한 구조계의 축약된 동강성행렬 표현)

  • 양경택;최계식
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.95-102
    • /
    • 1993
  • A modeling method is described to provide a smaller structural dynamic model which can be used to compare finite element model of a structure with its experimental counterpart. A structural dynamic model is assumed to be represented by dynamic stiffness matrix. To validate a finite element model, it is often necessary to condense a large degrees of freedom (dofs) to a relatively small number of dofs. For these purpose, static reduction techniques are widely used. However, errors in these techniques are caused by neglecting frequency dependent terms in the functions relating slave dofs and master dofs. An alternative method is proposed in this paper in which the frequency dependent terms are considered by expressing the reduced dynamic stiffness matrix with orthogonal polynomials. The reduced model has finally a minimum set of dofs, such as sensors and excitation points and it is under the same condition as the physical system. It is proposed that the reduced model can be derived from finite element model. The procedure is applied to example structure and the results are discussed.

  • PDF

Accuracy Analysis of Parallel Method based on Non-overlapping Domain Decomposition Method (비중첩 영역 분할기법 기반 병렬해석의 정확도 분석)

  • Tak, Moonho;Song, Yooseob;Jeon, Hye-Kwan;Park, Taehyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.301-308
    • /
    • 2013
  • In this paper, an accuracy analysis of parallel method based on non-overlapping domain decomposition method is carried out. In this approach, proposed by Tak et al.(2013), the decomposed subdomains do not overlap each other and the connection between adjacent subdomains is determined via simple connective finite element named interfacial element. This approach has two main advantages. The first is that a direct method such as gauss elimination is available even in a singular problem because the singular stiffness matrix from floating domain can be converted to invertible matrix by assembling the interfacial element. The second is that computational time and storage can be reduced in comparison with the traditional finite element tearing and interconnect(FETI) method. The accuracy of analysis using proposed method, on the other hand, is inclined to decrease at cross points on which more than three subdomains are interconnected. Thus, in this paper, an accuracy analysis for a novel non-overlapping domain decomposition method with a variety of subdomain numbers which are interconnected at cross point is carried out. The cause of accuracy degradation is also analyze and establishment of countermeasure is discussed.

Large strain analysis of two-dimensional frames by the normal flow algorithm

  • Tabatabaei, R.;Saffari, H.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.529-544
    • /
    • 2010
  • Nonlinear equations of structures are generally solved numerically by the iterative solution of linear equations. However, this iterative procedure diverges when the tangent stiffness is ill-conditioned which occurs near limit points. In other words, a major challenge with simple iterative methods is failure caused by a singular or near singular Jacobian matrix. In this paper, using the Newton-Raphson algorithm based on Davidenko's equations, the iterations can traverse the limit point without difficulty. It is argued that the propose algorithm may be both more computationally efficient and more robust compared to the other algorithm when tracing path through severe nonlinearities such as those associated with structural collapse. Two frames are analyzed using the proposed algorithm and the results are compared with the previous methods. The ability of the proposed method, particularly for tracing the limit points, is demonstrated by those numerical examples.

Calculation of dynamic stress intensity factors and T-stress using an improved SBFEM

  • Tian, Xinran;Du, Chengbin;Dai, Shangqiu;Chen, Denghong
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.649-663
    • /
    • 2018
  • The scaled boundary finite element method is extended to evaluate the dynamic stress intensity factors and T-stress with a numerical procedure based on the improved continued-fraction. The improved continued-fraction approach for the dynamic stiffness matrix is introduced to represent the inertial effect at high frequencies, which leads to numerically better conditioned matrices. After separating the singular stress term from other high order terms, the internal displacements can be obtained by numerical integration and no mesh refinement is needed around the crack tip. The condition numbers of coefficient matrix of the improved method are much smaller than that of the original method, which shows that the improved algorithm can obtain well-conditioned coefficient matrices, and the efficiency of the solution process and its stability can be significantly improved. Several numerical examples are presented to demonstrate the increased robustness and efficiency of the proposed method in both homogeneous and bimaterial crack problems.

Unstable Behaviour and Critical Buckling Load of Framed Large Spatial Structures in accordance with the Variation of Joint Rigidity (프레임형 대공간 구조물의 절점강성변화에 따른 불안정 현상과 임계좌굴하중)

  • Shon, Su-Deok;Lee, Seung-Jae;Lee, Dong-Woo;Kim, Seung-Deog
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.3
    • /
    • pp.47-56
    • /
    • 2014
  • This paper investigates the characteristics of unstable behaviour and critical buckling load by joint rigidity of framed large spatial structures which are sensitive to initial conditions. To distinguish the stable from the unstable, a singular point on equilibrium path and a critical buckling level are computed by the eigenvalues and determinants of the tangential stiffness matrix. For the case study, a two-free node example and a folded plate typed long span example with 325 nodes are adopted, and these adopted examples' nonlinear analysis and unstable characteristics are analyzed. The numerical results in the case of the two-free node example indicate that as the influence of snap-through is bigger; that of bifurcation buckling is lower than that of the joint rigidity as the influence of snap-through is lower. Besides, when the rigidity decreases, the critical buckling load ratio increases. These results are similar to those of the folded-typed long span example. When the buckling load ratio is 0.6 or less, the rigidity greatly increases.