• Title/Summary/Keyword: Singular System

Search Result 460, Processing Time 0.024 seconds

A NUMERICAL METHOD FOR CAUCHY PROBLEM USING SINGULAR VALUE DECOMPOSITION

  • Lee, June-Yub;Yoon, Jeong-Rock
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.487-508
    • /
    • 2001
  • We consider the Cauchy problem for Laplacian. Using the single layer representation, we obtain an equivalent system of boundary integral equations. We show the singular values of the ill-posed Cauchy operator decay exponentially, which means that a small error is exponentially amplified in the solution of the Cauchy problem. We show the decaying rate is dependent on the geometry of he domain, which provides the information on the choice of numerically meaningful modes. We suggest a pseudo-inverse regularization method based on singular value decomposition and present various numerical simulations.

  • PDF

MULTIPLICITY RESULTS OF POSITIVE SOLUTIONS FOR SINGULAR GENERALIZED LAPLACIAN SYSTEMS

  • Lee, Yong-Hoon;Xu, Xianghui
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1309-1331
    • /
    • 2019
  • We study the homogeneous Dirichlet boundary value problem of generalized Laplacian systems with a singular weight which may not be in $L^1$. Using the well-known fixed point theorem on cones, we obtain the multiplicity results of positive solutions under two different asymptotic behaviors of the nonlinearities at 0 and ${\infty}$. Furthermore, a global result of positive solutions for one special case with respect to a parameter is also obtained.

WEIGHTED ESTIMATES FOR CERTAIN ROUGH OPERATORS WITH APPLICATIONS TO VECTOR VALUED INEQUALITIES

  • Liu, Feng;Xue, Qingying
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.1035-1058
    • /
    • 2021
  • Under certain rather weak size conditions assumed on the kernels, some weighted norm inequalities for singular integral operators, related maximal operators, maximal truncated singular integral operators and Marcinkiewicz integral operators in nonisotropic setting will be shown. These weighted norm inequalities will enable us to obtain some vector valued inequalities for the above operators.

LQG/LTR controller design for ground alignment of intertial platform

  • Kim, Jong-Kwon;Shin, Yong-Jin;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.372-375
    • /
    • 1995
  • The LQG/LTR controller design procedure for ground alignment of inertial platform is accomplished. Due to the alignment system dynamics, LQG/LTR controller is proposed to overcome both singular problem and nonsquare problem. To show the effectiveness of this control system, computer simulation was performed under the assumption of random sway motion.

  • PDF

POLLUTION DETECTION FOR THE SINGULAR LINEAR PARABOLIC EQUATION

  • IQBAL M. BATIHA;IMAD REZZOUG;TAKI-EDDINE OUSSAEIF;ADEL OUANNAS;IQBAL H. JEBRIL
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.647-656
    • /
    • 2023
  • In this work, we are concerned by the problem of identification of noisy terms which arise in singular problem as for remote sensing problems, and which are modeled by a linear singular parabolic equation. For the reason of missing some data that could be arisen when using the traditional sentinel method, the later will be changed by a new sentinel method for attaining the same purpose. Such new method is a particular least square-like method which permits one to distinguish between the missing terms and the pollution terms. In particular, a sentinel method will be given here in its more realistic setting for singular parabolic problems, where in this case, the observation and the control have their support in different open sets. The problem of finding a new sentinel is equivalent to finding singular optimality system of the least square control for the parabolic equation that we solve.

Design of Robust Reduced-Order Model Predictive Control using Singular Value Decomposition of Pulse Response Circulant Matrix (펄스응답 순환행렬의 특이치 분해를 이용한 강인한 차수감소 모델예측제어기의 설계)

  • 김상훈;문혜진;이광순
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.413-419
    • /
    • 1998
  • A novel order-reduction technique for model predictive control(MPC) is proposed based on the singular value decomposition(SVD) of a pulse response circulant matrix(PRCM) of a concerned system. It is first investigated that the PRCM (in the limit) contains a complete information of the frequency response of a system and its SVD decomposes the information into the respective principal directions at each frequency. This enables us to isolate the significant modes of the system and to devise the proposed order-reduction technique. Though the primary purpose of the proposed technique is to diminish the required computation in MPC, the clear frequency decomposition of the SVD of the PRCM also enables us to improve the robustness through selective excitation of frequency modes. Performance of the proposed technique is illustrated through two numerical examples.

  • PDF

Sensor Fault Detection of Small Turboshaft Engine for Helicopter

  • Seong, Sang-Man;Rhee, Ihn-Seok;Ryu, Hyeok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.97-104
    • /
    • 2008
  • Most of engine control systems for helicopter turboshaft engines are equipped with dual sensors. For the system with dual redundancy, analytic methods are used to detect faults based on the system dynamical model. Helicopter engine dynamics are affected by aerodynamic torque induced from the dynamics of the main rotor. In this paper an engine model including the rotor dynamics is constructed for the T700-GE-700 turboshaft engine powering UH-60 helicopter. The singular value decomposition(SVD) method is applied to the developed model in order to detect sensor faults. The SVD method which do not need an additional computation to generate residual uses the characteristics that the system outputs in direction of the left singular vector if an input is applied in direction of the right singular vector. Simulations show that the SVD method works well in detecting and isolating the sensor faults.

  • PDF

Swing-up Control and Singular Problem of an Acrobot System

  • Nam, Taek-Kun;Tsutomu Mita
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.104.5-104
    • /
    • 2001
  • In this paper, we address the swing up control and the singular problem of an acrobot. We derive a serial system equation from the acceleration constraint that there is no actuator on the first joint. Based on the serial system representation, we propose a swing up and stabilization control algorithm to move the acrobot from its downward equilibrium to its inverted equilibrium position. Simulation result is also provided to show the effectiveness of the proposed control strategy.

  • PDF

A NUMERICAL METHOD FOR SINGULARLY PERTURBED SYSTEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION DIFFUSION TYPE WITH A DISCONTINUOUS SOURCE TERM

  • Tamilselvan, A.;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1279-1292
    • /
    • 2009
  • In this paper, a numerical method that uses standard finite difference scheme defined on Shishkin mesh for a weakly coupled system of two singularly perturbed convection-diffusion second order ordinary differential equations with a discontinuous source term is presented. An error estimate is derived to show that the method is uniformly convergent with respect to the singular perturbation parameter. Numerical results are presented to illustrate the theoretical results.

  • PDF

Transition Rates in a Bistable System Driven by Singular External Forces

  • Cheol-Ju Kim;Dong Jae Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.95-100
    • /
    • 1993
  • A noise-induced transition is presented for a bistable system subjected to a multiplicative random force, which is singular at the unstable state. The stationary probability distribution is obtained from the Fokker-Planck equation and the effects of the singularity is analyzed. On the basis of noise-induced phase transition with Gaussian white noise, the relaxation time and the transition rate of the system are evaluated up to the first order correction of D. In the parameter region v < l, the transition rates decrease as the exponent v goes to 1 and as the coefficient of the linear term of the kinetic equation increases.