• Title/Summary/Keyword: Single-model

Search Result 7,166, Processing Time 0.028 seconds

Multi-view Semi-supervised Learning-based 3D Human Pose Estimation (다시점 준지도 학습 기반 3차원 휴먼 자세 추정)

  • Kim, Do Yeop;Chang, Ju Yong
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.174-184
    • /
    • 2022
  • 3D human pose estimation models can be classified into a multi-view model and a single-view model. In general, the multi-view model shows superior pose estimation performance compared to the single-view model. In the case of the single-view model, the improvement of the 3D pose estimation performance requires a large amount of training data. However, it is not easy to obtain annotations for training 3D pose estimation models. To address this problem, we propose a method to generate pseudo ground-truths of multi-view human pose data from a multi-view model and exploit the resultant pseudo ground-truths to train a single-view model. In addition, we propose a multi-view consistency loss function that considers the consistency of poses estimated from multi-view images, showing that the proposed loss helps the effective training of single-view models. Experiments using Human3.6M and MPI-INF-3DHP datasets show that the proposed method is effective for training single-view 3D human pose estimation models.

Availability Analysis of Single Sensor Node using Hierarchical Model (계층적 모델을 이용한 단일 센서 노드의 가용성 분석)

  • Yoon, Young Hyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.87-93
    • /
    • 2009
  • In this paper, we propose and evaluate the availability of single sensor node using a hierarchial modeling approach. We divides a sensor node into a software and hardware and analyze failures of each component. We construct Markov chains to represent the components of a sensor node, and then we construct a hierarchical model which use fault tree in upper level and Markov chains in lower level. We evaluate the availability and down of single sensor node.

Position control of single-link manipulator using neural network (신경 회로망을 이용한 단일 링크의 유연한 매니퓰레이터의 위치제어)

  • 이효종;최영길;전홍태;장태규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.18-23
    • /
    • 1990
  • In this paper, the dynamic modeling and a tip-position controller of a single-link flexible manipulator are developed. To design the controller of a flexible manipulator, at first, it is required to obtain the accurate dynamic model of manipulator describing both rigid motion and flexible vibration. For this purpose, FEM(Finite Element Method) and Lagrange approach are utilized to obtain the dynamic model. After obtaining the dynamic model of a single-link manipulator, a controller which computes the input torque to perform the desired trajectory is developed using neural network.

  • PDF

Analysis of Disk type Single-Pase Switched Reluctance Motor by SD Model (3차원 모델링에 의한 디스크형 단상 스위치드 리럭턴스 모터의 해석)

  • Lee, Jong-Han;Lee, Eun-Woong;Kim, Jong-Kyum;Lee, Dong-Ju;Yun, Su-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.204-206
    • /
    • 1997
  • The disk type Single-phase Switched Reluctance Motor has advantages of constructional simplicity, robustness and low cost. In this paper, We analyze the 3-D model of DSPSRM(Disk type Single-Phase Switched Reluctance Motor) by Finite Element Method for finding optimal design model.

  • PDF

A Model of Organizational Decision Process

  • Kim, Woo-Youl
    • Journal of the military operations research society of Korea
    • /
    • v.7 no.2
    • /
    • pp.63-99
    • /
    • 1981
  • The generalized goal decomposition model proposed by Ruefli as a single period decision model is presented for the purpose of a review and extended to make a multiple period planning model. The multiple period planning model in the three level organization is formulated with, linear goal deviations by introducing the goal programming method. Dynamic formulation using the generalized goal decomposition model for each single period problem is also presented. An iterative search algorithm is presented as an appropriate solution method of the dynamic formulation of the multiple period planning model.

  • PDF

Generalized Partially Double-Index Model: Bootstrapping and Distinguishing Values

  • Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.305-312
    • /
    • 2015
  • We extend a generalized partially linear single-index model and newly define a generalized partially double-index model (GPDIM). The philosophy of sufficient dimension reduction is adopted in GPDIM to estimate unknown coefficient vectors in the model. Subsequently, various combinations of popular sufficient dimension reduction methods are constructed with the best combination among many candidates determined through a bootstrapping procedure that measures distances between subspaces. Distinguishing values are newly defined to match the estimates to the corresponding population coefficient vectors. One of the strengths of the proposed model is that it can investigate the appropriateness of GPDIM over a single-index model. Various numerical studies confirm the proposed approach, and real data application are presented for illustration purposes.

Level control of single water tank systems using Fuzzy-PID technique

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.550-556
    • /
    • 2014
  • In this study, for the control of a single water tank system, a fuzzy-PID controller design technique based on a fuzzy model is investigated. For this purpose, a water tank system is linearized as a number of submodels depending on the operating point, and a fuzzy model is obtained by fuzzy combining. Each submodel is approximated as a first order time delay model, and a PID controller is designed using several existing tuning techniques. Then, through the fuzzy combination of this controller using the same method as that of the fuzzy model, a fuzzy-PID controller is designed. For the proposed technique, a simulation is performed using the fuzzy model of a water tank system, and the validity is examined by comparing its performance with that of a PID controller.

A new developed approach for EDL induced from a single concentrated force

  • Bekiroglu, Serkan;Arslan, Guray;Sevim, Baris
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1105-1119
    • /
    • 2016
  • In this study, it is presented that a new developed approach for equivalent area-distributed loading (EADL) induced from a single concentrated force. For the purpose, a full scale 3D steel formwork system was constructed in laboratory conditions. A developed load transmission platform was put on the formwork system and loaded step by step on the mass center. After each load increment, displacement was measured in several crictical points of the system. The developed platform which was put in to slab of formwork to equivalently distribute the load from a point to the whole slab was constituted using I profiles. A 3D finite element model of the formwork system was analyzed to compare numerical displacement results with experimental ones. In experimental tests,difference among the displacements obtained from reference numerical model (model applied EADL) and main numerical model (model applied single load using a load cell via load transmission platform) is about %13 in avarage. Difference among the displacements obtained from experimental results and main numerical model under 30 kN single load is about %11 in avarage. The results revealed that the displacements obtained experimentally and numerically are dramatically closed to each other. It is highlighted from the study that the developed approach is reliable and useful to get EDL.

Laterally Loaded Behavior of Short Drilled Shaft Foundation for Single-Pole Structures (단주 구조 송전탑 기초의 횡방향 거동에 관한 연구)

  • Choi, Ho-Young;Kim, Yeong-Hun;Lee, Seung-Rae;Kim, Dae-Hak;Kim, Dae-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1106-1116
    • /
    • 2008
  • Single-pole transmission structures which are supported by drilled shaft foundations are usually subjected to large overturning moments with modest vertical and lateral loads. To analyze the behavior of the drilled shaft under such loading conditions, an analytical model was developed based on beam-column and subgrade reaction methods. Field model tests were performed to calibrate the developed analytical model in which additional subgrade spring models were adopted. The field test results estimated from the calibrated analytical model were compared with those calculated by one spring model and other commercial program. According to the comparison study, the developed analytical model was proven to be a useful tool to analyze the laterally loaded behavior of foundations for single-pole structures.

  • PDF

Improved ensemble machine learning framework for seismic fragility analysis of concrete shear wall system

  • Sangwoo Lee;Shinyoung Kwag;Bu-seog Ju
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.313-326
    • /
    • 2023
  • The seismic safety of the shear wall structure can be assessed through seismic fragility analysis, which requires high computational costs in estimating seismic demands. Accordingly, machine learning methods have been applied to such fragility analyses in recent years to reduce the numerical analysis cost, but it still remains a challenging task. Therefore, this study uses the ensemble machine learning method to present an improved framework for developing a more accurate seismic demand model than the existing ones. To this end, a rank-based selection method that enables determining an excellent model among several single machine learning models is presented. In addition, an index that can evaluate the degree of overfitting/underfitting of each model for the selection of an excellent single model is suggested. Furthermore, based on the selected single machine learning model, we propose a method to derive a more accurate ensemble model based on the bagging method. As a result, the seismic demand model for which the proposed framework is applied shows about 3-17% better prediction performance than the existing single machine learning models. Finally, the seismic fragility obtained from the proposed framework shows better accuracy than the existing fragility methods.