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Generalized Partially Double-Index Model: Bootstrapping
and Distinguishing Values
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Abstract

We extend a generalized partially linear single-index model and newly define a generalized partially double-
index model (GPDIM). The philosophy of sufficient dimension reduction is adopted in GPDIM to estimate un-
known coeflicient vectors in the model. Subsequently, various combinations of popular sufficient dimension
reduction methods are constructed with the best combination among many candidates determined through a
bootstrapping procedure that measures distances between subspaces. Distinguishing values are newly defined to
match the estimates to the corresponding population coefficient vectors. One of the strengths of the proposed
model is that it can investigate the appropriateness of GPDIM over a single-index model. Various numerical
studies confirm the proposed approach, and real data application are presented for illustration purposes.

Keywords: bootstrapping, central subspace, distinguishing value, generalized partially linear
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1. Introduction

A regression is a study of the conditional distribution of a response Y given a set of predictors X =
X1, .. .,X,,)T. Predictors are separated by two sets in regression modeling and the two sets have
different relationships with the response. For example, one set of predictors is continuous and the
other is categorical. Suppose that the set of continuous variables has non-linear relationship to the
response, while the other is used for offset and is assumed to have a linear relation. Then, usual
ordinary least square is not an ideal way to estimate unknown regression coefficients, because the
non-linear relationship is known. This issue that two sets of predictors have different relationships
with the response was addressed in Carroll et al. (1997). In the work, the following model was
assumed for the two sets of predictors X = (U € R = (Xj,...,X,, ), W e R? = (X, .1,... ,X,,))T
with p = p, + py:

Y = f(a"U)+BTW +¢, (1.1)

where f(-) is an unknown function, @ € R”+, € RP+, and ¢ is assumed to be a random error with zero
mean and variance o>, which is independent of (U, W). The model in (1.1) is called textitgeneralized
partially linear single-index model (GPLSIM).
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If f is the identity function, GPLSIM is reduced to linear regression. GPLSIM is equivalent to a
single-index model if the predictors are not separable and f should be considered in the study. The
single-index model generalizes linear regression and GPLSIM generalizes the single-index model;
subsequently, GPLSIM forms a large class of regression models.

One limit in practice of GPLSIM is placed onto partial linear relation of one set of predictors.
GPLSIM is not directly applicable if the relationship is expected to be non-linear.

The purpose of the article is placed on defining a class of regression models to generalize GPLSIM,
dropping “partially linear”, and on estimating @ and  without prior knowledge on the true function
relationships between two sets of predictors and the response. The generalized partially single-index
model has been successfully used in many science fields; in addition, it is believed that GPDIM is
beneficiary to progress in relevant fields of sciences because GPDIM generalizes. Another strength of
the proposed approach is placed on investigating the appropriateness of GPDIM over a single-index
model. Additional functional complexity can be avoided in the modeling procedure if the single-index
model is chosen over GPDIM.

The organization of this article is as follows. Section 2 is devoted to defining a generalized class of
GPLSIM and developing a methodology to estimate unknown coefficient vectors. Section 3 presents
numerical studies and real data analysis. We summarize our work in Section 4.

2. Generalized Partially Double-Index Model
2.1. Generalized partially double-indexed model

To generalize GPLSIM in (1.1), we assume the following regression model with X = (U € R, W ¢
RPT:

Y =g(a"U.g'W.2). 2.1
The model in (2.1) is equivalent to GPLSIM, if it is assumed that
g(a"U.B"W. &) = £ (a"U) + B'W +&.

Therefore, the model in (2.1) generalizes GPLSIM, and it will be called a generalized partially double-
index model (GPDIM). In GPDIM, the word of “partially” is used, because the regression coefficients
are related with partial sets of predictors.

In GPDIM, the response of ¥ depends on X only through two linear combinations of U and
BTW. That is, the conditional relationship of ¥ given X is fully characterized by @™U and STW.
Therefore, the primary interest in the GPDIM is placed on the estimation of @ and 8 without informa-
tion on g(-). This notion is closely related with sufficient dimension reduction, which will be briefly
discussed in the next subsection. Combining sufficient dimension reduction methods, a bootstrapping
methodology to estimate U and 8"W is proposed in the later section.

2.2. Sufficient dimension reduction

Sufficient dimension reduction (SDR) in regression of Y|X € R” pursues to replace the original p-
dimensional predictors X by a lower-dimensional linear projection predictor 77X without a loss of
information about the conditional distribution of Y|X such that

Y 1L X|Ip"X, (2.2)

where 17 € RP*? with ¢ < p and 1L stands for independence.
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Statement (2.2) directly implies that the conditional distributions of Y|X and Y|pTX are equal,
and the dimension reduction of X through "X is achieved. The minimal subspace spanned by the
columns of 7 to satisfy (2.2) is called the central subspace, Syx. The existence of Syjx is guaranteed
under various conditions such as the open and convex support of X. Hereafter an true orthonormal
basis matrix of Sy;x will be denoted as 7.

The four methods to estimate Syx, which have been popularly used up to date among others, are:
(1) Ordinary least squares (OLS; Cook, 1998; Yin and Cook, 2002); (ii) sliced inverse regression (SIR;
Li, 1991); (iii) sliced average variance estimation (SAVE; Cook and Weisberg, 1991); (iv) principal
Hessian directions (pHd; Li, 1992). Each method produce its own kernel matrix M,, whose column
spans Syx.

2.3. Estimation: bootstrapping and distinguishing values
Considering interpretation of GPDIM in SDR context, Syx is spanned by the columns of

ne R = fog = (@07, By = 0.8)).

Therefore, the true dimension of Syx under GPDIM is equal to two.

Popular SDR methods introduced in the previous subsection are supposed to estimate a¢ and £,
and this induces the estimation of @ and . According to Ye and Weiss (2003), the estimation of Syxx
can be improved by combining two SDR methods, which will be followed hereafter.

Let Myame represent the kernel matrix constructed from the method called “name” in the subscript
for a regression of Y[X = (U, W)T. For example, Moys represent the kernel matrix constructed from
OLS. Then, we will consider the following four population kernel matrices:

Mors = 27! cov(¥, X) cov(¥, X)Tx !,
Morso = T !cov (Yz, X) cov (Yz, X)T > L
Msave = £72 E(I - cov(ZY))%:

Mg = E2E((Y - E(Y)ZZ"),

where £ = cov(X) and Z = £7'/2(X — E(X)). Then, we consider the following weighted sums of the
four kernel matrices:

Mc = Mg + (1 — w)M.,,

where 0 < w < 1 and M and M, are two different kernel matrices among the four. If w is equal to
0 or 1, M is reduced to one kernel matrix among the four. According to Ye and Weiss (2003), the
columns of Mc span Syx.

Once M is constructed, it is spectral-decomposed such that M = Z{.’Zl /l[yl-yiT with 1, > A, >

0 = --- = 0. Then the eigenvectors of ¥ = (y;,7,), corresponding to the two largest and non-zero
eigenvalues of A; and A, forms a basis of Syxx, and can be considered as (ao,f,). Here the last
p — 2 eigenvalues of A3, A4, ..., 4, are all equal to zero, because the true dimension in model (2.1) is

assumed to be two.

In practice, the four M, are replaced by its own sample quantities, denoting them as Moy s, Mops2,
MSA\/E and Mpﬁd. Then, from the sample version of MC = wMD + (1 - w)Mo, the eigenvectors of
¥ = (¥,,%,) corresponding to its two largest eigenvalues is obtained. Finally, S(3) becomes the
estimate of Syx.
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Table 1: Candidates of Mc

Case 1: MoLs Case 2: wMopLrs + (1 — w)MoLs2
Case 3: wMors + (1 - w)MpHd Case 4: wMorss + (1 — w)MpHd
Case 5: wMOLS + (1 - w)MSA\/E Case 6: wMOLsz + (1 - w)MSAVE

As the candidates of M, the six cases are considered with varying w = 0.25,0.5,0.75 for Case
2 and w = 0.0,0.25,0.5,0.75 for Cases 3—-6, which are summarized in Table 1. In the candidates,
Mg is not considered, because Case 2 is similar to SIR and often shows better performances in the
basis estimation of Syx according to Yoo (2009), if its dimension is equal to two. For Cases 3-6
with w = 0 and Case 2, # is constructed from one of MSAVE or MpHd. For Case 1, since only one
eigenvalue is non-zero, it is one-dimensional. According to Shao et al. (2006), it is equivalent to the
estimation of the coefficient vector in single-index model. It must be noted that the proposed approach
can investigate the appropriateness of GPDIM over a single-index model, and this is one of strengths
of the proposed approach. If Case 1 of Mc=Mqys is chosen as the best, then a single-index model
had better be used over the GPDIM. However, it should be done carefully (although the single-index
model is recommended) because various numerical studies show that MOLS can be selected as the best
with smaller sample sizes. So it should be suggested that one needs to do further investigation to test
that d = 1 through various SDR methods.

Next, a best case with proper w in Table 1 should be chosen. A bootstrapping determination
procedure in Ye and Weiss (2003) is applied. First, obtain #,.; from the original sample for each case.
Then construct a bootstrap sample of ¥ and X, and obtain #, from the bootstrap sample for each case.
Then compute a trace correlation 7 in Hooper (1959) to measure how close the column subspaces of
f1,.¢ and ), such that

"= \/%traCe ({f’ref (ﬁ?efilref)71 f]rTef} {i]b (f]bTi]b)—l f)}f})

To convert the correlation (larger r, closer to each other) to distance (smaller value, closer to each
other), a trace correlation distance D; is considered:

Dlr,:l—l’b.

Iterate the bootstrap sampling k times for each case and compute

k
2 1 r
Dy = z;Db.

Finally, choose the combinations of w, M and M, to have the smallest D, and set #j,.; constructed
from the suggested combinations as the estimate of 1. From various simulation studies and from Yoo
(2011, 2013), 500 numbers of bootstrapping are normally recommended in most cases.

Although #) can be obtained via the bootstrapping SDR approach, it is not known which of #; or
f], is an estimate of @. Denote & and ,30 as estimates of @ and ,@0, respectively. The determination is
critical, because a wrong decision automatically results in an incorrect estimation. To do this correctly,
we will consider the following rationale. For @y = (@ € RP+,0) and 8, = (0,8 € RP»), respectively,
the last p — p, elements and the first p — p,, elements are zeros. Suppose that #; is &o. Then, the last
p — py elements in #; should be close to zeros. Or, provided that #, is ,BO, the first p — p,, elements
of 7, should be close to zeros. Therefore, it is reasonable to compare the following four squared
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sums under assuming each #; is the estimate of either ¢ or B, and the squared sum will be called
distinguishing values (DV):

Pu P
— o2 ~2
DViao = [0, = D, .
=1 {=(py+1)
P—Pw P
_ 52 72
DV, g, = Z m, - Z m,|
t=1 {=(p-pw+1)
Pu P
— £2 ~2
DVia = |15, — D |-
=1 =(pu+1)
P—DPw )4
_ 2 h2
DVi]z»ﬂo - Z ,’2[ - Z ”2[ :
t=1 t=(p—pu+1)

Larger DVs indicate more clear separation between the two sets. So, choose the largest one among
the four candidate DVs, and set the first letter as the estimate of the second letter in the subscript
of the DV. If any of #, or #, is determined as &y, the other one is automatically set to be [30. For
example, supposing that DV, g is the largest, #j; becomes BO, and 7}, does &¢. After completing this
determination procedure, & and ﬁ are estimated by the first p, elements of &, and the last p,, elements
of BO, respectively.

3. Numerical Studies and Data Analysis

3.1. Numerical studies

We considered the five simulated examples under the following variable configurations: U = (Uy,...,
Us)Tand W = (W, ..., Ws)T "/ N(0, 1), and & "= N(0, 1) IL (U, W).

Model 1: Y=U;+W, +e&.

Model 2: Y =U,; + le +&.

Model 3: Y = U; +exp(W))e.

Model 4: Y = U? + exp(W))e.

Model 5: Y = U? + W} +&.

Model 1 is a classical multiple linear regression, which is a special case of single-index models. So a
vectorn = (1,0,0,0,0,1,0,0,0, 0)T is one-dimensional. For Models 2—5, we have 17 = {(a,0), (O,B)}T,
where @ = g = (1,0,0,0,0)T.

For each model, 50, 100, 200 sample sizes were considered with 100 iterations and 500 numbers
of bootstrapping. We also computed the percentages that casel was selected the best in all examples.
To measure how well 5 is estimated, the averages D,’I of the following trace correlation distance D),
between 7 and 7} defined in Section 2.3 were computed:

Dy=1- \/ Juace ({a (") 4" H{a(ma) nT})
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Table 2: Simulation results for Examples 1-5: D;, the averages of the trace correlation distance between 1 and #

n Model 1 Model 2 Model 3 Model 4 Model 5
50 D;, 0.050 0.17 0.23 0.31 0.32
Percent of casel 100 36.0 20.0 15.0 17.0
100 D;, 0.025 0.06 0.11 0.14 0.10
Percent of casel 100 3.0 6.0 2.0 1.0
200 D;} 0.015 0.02 0.07 0.04 0.03
Percent of casel 100 0.0 0.0 0.0 0.0
When casel was recommended in Examples 2-5, one dimensional estimate of f = (7, ..., ﬁlo)T was
replaced by f), = {(1,...,75,0),(0,7, ..., f]lo)}T, and D; between 7 and #), was computed. For all

the artificial models, the average D; of the trace correlation distances and the selection percentages of
casel are reported in Table 2.

Table 2 shows that, with smaller sample size n = 50, casel was selected upto 36%, but the
percentages dramatically decrease with n = 100. The computed Df] is quite reliable with n = 100 in
all the models; however, they are relatively large with n = 50. Therefore, numerical studies show that,
with moderate sample sizes, the proposed method is not problematic in practice.

Under CPU of AMD Phenom(tm)II and 4GB sizes of RAM, the computing times for one iteration
of Example 1 with n = 50, 100,200 and 500 numbers of bootstrapping were 14.33, 15.58 and 17.69
seconds, respectively. The system described above is below recent standard; therefore, the time will
not matter in practice under fairly-equipped computers.

3.2. Real data application: beta-carotene plasma

For illustration purpose, we considered a data regarding plasma retinol and beta-carotene levels, which
can be obtained from the following web address at http://lib.stat.cmu.edu/datasets/Plasma_Retinol. In
the data, we consider a regression of beta-carotene plasma concentration levels given four contin-
uous predictors of calories consumed per day (Calorie), grams of fiber consumed per day (Fiber),
weight/height® (Quetelet), dietary retinol consumed per day (mcg, Ret.diet), and two categorical pre-
dictors of Gender (0 = male; 1 = female) and Smoke (0 = non-smoker; 1 = current smoker) as two
sets of predictors.

The data was obtained from StatLib website. The 257th case was indicated as an outlier; therefore,
it was removed from the data set, and the sample size was 314. To make the four continuous predictors
satisfy requirements of SDR methods, Calorie, Fiber and Ret.diet were transformed to log-scale and
Quetelet to the inverse-scale.

The predictors in the study naturally can be separated into two sets based on their types. Let
U € R* and W € R? represent the four-dimensional continuous predictors and the two-dimensional
categorical ones, respectively.

First, from the candidates of Mc, D; were computed as reported in Table 3. According to the
table, all D) are observed to be pretty low, although Dj from OLS is the smallest. Therefore, the
single-index model should be a good choice for the data analysis despite considering the possibility
of GPDIM. This result is similar to the founding of Yoo (2008, 2010). Then, marginally standardizing
each of the remaining predictors to have a sample standard deviation of 1, the analysis might now
be continued by a scatter plot of each of the response against the following estimated single-index
predictor given in Figure 1(a) and (b).

@'U +BTW = — 0.008 log Calorie + 0.018 log Fiber — 0.001 log Ret.diet + .999 Quetelet ™!
+ 0.006 Gender — 0.012 Smoke.
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Table 3: Determination of the best case via D;

Cases w D

b
Case 1, OLS 0.018
Case 2 w=025 0.066
- - w =0.50 0.062
wMoLs + (1 — w)Mis2 =075 0.079
Case 3 w=025 0.074
N . w = 0.50 0.073
@Mors + (1 - )Mpha w=075 0.075
Case 4 w=025 0.053
N . w = 0.50 0.053
@Mors2 + (1 = @)Mphq w=075 0.053
Mnq (Case 3 and Case 4 with w = 0) 0.086
Case 5 w =025 0.111
~ ~ w =0.50 0.112
@Mots + (1 - @)Msave w=075 0.111
Case 6 w=025 0.106
- ~ w =0.50 0.106
wMoLs2 + (1 — w)MsavE w=075 0.106
M;save (Case 5 and Case 6 with w = 0) 0.097
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Figure 1: Scatter plots between the response and the estimated single-index predictor in Section 3.2

4. Discussion

This paper defines generalized partially double-index model and unknown coefficient vectors in the
model are estimated via sufficient dimension reduction (SDR). For this, a combination of popular
SDR methods is considered, and the best one is determined through a bootstrapping procedure. Dis-
tinguishing values are newly proposed to match the estimates to the coefficient vectors in the model
properly. One of the strengths of the proposed method is that it can investigate the appropriateness of
GPDIM over a single-index model. Various numerical studies support the proposed methodologies.
Since a generalized partially single-index model has been successfully used in many science fields
GPDIM generalizes it; therefore, it is believed that GPDIM is beneficiary to progress in relevant
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sciences fields.

The proposed method is not applicable under n < p, because the SDR methods used in the paper
are limited in such case. As future work, a method to estimate the coefficients in the generalized
partially double-index model under n < p is needed to be developed with and work along these lines
in progress.
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