• Title/Summary/Keyword: Single photon emission computed tomography

Search Result 150, Processing Time 0.032 seconds

Comparison of Image Uniformity with Photon Counting and Conventional Scintillation Single-Photon Emission Computed Tomography System: A Monte Carlo Simulation Study

  • Kim, Ho Chul;Kim, Hee-Joung;Kim, Kyuseok;Lee, Min-Hee;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.776-780
    • /
    • 2017
  • To avoid imaging artifacts and interpretation mistakes, an improvement of the uniformity in gamma camera systems is a very important point. We can expect excellent uniformity using cadmium zinc telluride (CZT) photon counting detector (PCD) because of the direct conversion of the gamma rays energy into electrons. In addition, the uniformity performance such as integral uniformity (IU), differential uniformity (DU), scatter fraction (SF), and contrast-to-noise ratio (CNR) varies according to the energy window setting. In this study, we compared a PCD and conventional scintillation detector with respect to the energy windows (5%, 10%, 15%, and 20%) using a $^{99m}Tc$ gamma source with a Geant4 Application for Tomography Emission simulation tool. The gamma camera systems used in this work are a CZT PCD and NaI(Tl) conventional scintillation detector with a 1-mm thickness. According to the results, although the IU and DU results were improved with the energy window, the SF and CNR results deteriorated with the energy window. In particular, the uniformity for the PCD was higher than that of the conventional scintillation detector in all cases. In conclusion, our results demonstrated that the uniformity of the CZT PCD was higher than that of the conventional scintillation detector.

Practical Approach for the Clinical Use of Dopamine Transporter Imaging (도파민 운반체 영상의 임상이용을 위한 실제적 접근)

  • Kim, Jae-Seung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.6
    • /
    • pp.425-434
    • /
    • 2008
  • Dopamine transporter imaging is useful in the diagnosis of Parkinson's disease and the most successful technique in the clinical use of neuroreceptor imaging. Recently, several radiopharmaceuticals including I-123 FP-CIT, Tc-99m TRODAT, and F-18 FP-CIT for dopamine transporter imaging have been approved for the routine clinical use in several European countries, Taiwan and Korea, respectively. This review summarized the practical issue for the routine clinical examination of dopamine transporter imaging.

Radioligands for Imaging Dopamine and Serotonin Receptors and Transporters (도파민과 세로토닌 운반체 및 수용체 영상을 위한 방사성리간드)

  • Chi, Dae-Yoon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.3
    • /
    • pp.159-168
    • /
    • 2000
  • In the 1980s, techniques to image the human subjects in a three-dimensional direction were developed. Two major techniques are SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) which allow the detector to detect a single photon or annihilation photons emitted from the subjects injected with radiopharmaceuticals. Since the latter two techniques can measure the density of receptors, enzymes and transporters in living human, it may be very important project to develop selective methods of labeling with radionuclides and to develop new radiopharmaceuticals. There has been a considerable interest in developing new compounds which specifically bind to dopamine and serotonin receptor and transporters, and it will be thus very useful to label those compounds with radionuclides in order to gain a better understanding in biochemical and pharmacological interactions in living human. This review mentions the characteristics of radioligands for the imaging of dopamine and serotonin receptors and transporters. Although significant progress has been achieved in the development of new PET and SPECT ligands for in vivo imaging of those receptors and transporters, there are continuous needs of new diagnostic radioligands.

  • PDF

Early-Phase SPECT/CT for Diagnosing Osteomyelitis: A Retrospective Pilot Study

  • Soo Jin Lee;Kyoung Sook Won;Hyung Jin Choi;Yun Young Choi
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.604-611
    • /
    • 2021
  • Objective: The aim of this pilot study was to investigate the potential of early-phase single-photon emission computed tomography (SPECT)/computed tomography (CT) using technetium-99m methyl diphosphonate (99mTc-MDP) for diagnosing osteomyelitis (OM). Materials and Methods: Twenty-one patients with suspected OM were enrolled retrospectively. Three-phase bone scan (TPBS), early-phase SPECT/CT (immediately after blood pool planar imaging), and delayed-phase SPECT/CT (immediately after delayed planar imaging) were performed. The final diagnoses were established through surgery or clinical follow-up for over 6 months. We compared three diagnostic criteria based on (I) TPBS alone, (II) combined TPBS and delayed-phase SPECT/CT, and (III) early-phase SPECT/CT alone. Results: OM was diagnosed in 11 of 21 patients (nine surgically and two clinically). Of the 11 OM patients, criterion-I, criterion-II, and criterion-III were positive in six, seven, and 10 patients, respectively. Of the 10 non-OM patients, criterion-I, criterion-II, and criterion-III were negative in five, five, and seven patients, respectively. The sensitivity/specificity/accuracy of criterion-I, criterion-II, and criterion-III for diagnosing OM were 54.5%/50.0%/55.0%, 63.6%/50.0%/57.1%, and 90.9%/70.0%/87.5%, respectively. Conclusion: This pilot study demonstrated the potential of using the early-phase SPECT/CT to diagnose OM. Based on the results, prospective studies with a larger sample size should be conducted to confirm the efficacy of early-phase SPECT/CT.

Synthesis and Biodistribution of Cat's Eye-shaped [57Co]CoO@SiO2 Nanoshell Aqueous Colloids for Single Photon Emission Computed Tomography (SPECT) Imaging Agent

  • Kwon, Minjae;Park, Jeong Hoon;Jang, Beom-Su;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2367-2370
    • /
    • 2014
  • "Cat's eye"-shaped $[^{57}Co]CoO@SiO_2$ core-shell nanostructure was prepared by the reverse microemulsion method combined with radioisotope technique to investigate a potential imaging agent for a single photon emission computed tomography (SPECT) in nuclear medicine. The core cobalt oxide nanorods were obtained by thermal decomposition of $Co-(oleate)_2$ precursor from radio isotope Co-57 containing cobalt chloride and sodium oleate. The $SiO_2$ coating on the surface of the core cobalt oxide nanorods was produced by hydrolysis and a condensation reaction of tetraethylorthosilicate (TEOS) in the water phase of the reverse microemulsion system. In vivo test, micro SPECT image was acquired with nude mice after 30 min of intravenous injection of $[^{57}Co]CoO@SiO_2$ core-shell nanostructure.

Preliminary study of artificial intelligence-based fuel-rod pattern analysis of low-quality tomographic image of fuel assembly

  • Seong, Saerom;Choi, Sehwan;Ahn, Jae Joon;Choi, Hyung-joo;Chung, Yong Hyun;You, Sei Hwan;Yeom, Yeon Soo;Choi, Hyun Joon;Min, Chul Hee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3943-3948
    • /
    • 2022
  • Single-photon emission computed tomography is one of the reliable pin-by-pin verification techniques for spent-fuel assemblies. One of the challenges with this technique is to increase the total fuel assembly verification speed while maintaining high verification accuracy. The aim of the present study, therefore, was to develop an artificial intelligence (AI) algorithm-based tomographic image analysis technique for partial-defect verification of fuel assemblies. With the Monte Carlo (MC) simulation technique, a tomographic image dataset consisting of 511 fuel-rod patterns of a 3 × 3 fuel assembly was generated, and with these images, the VGG16, GoogLeNet, and ResNet models were trained. According to an evaluation of these models for different training dataset sizes, the ResNet model showed 100% pattern estimation accuracy. And, based on the different tomographic image qualities, all of the models showed almost 100% pattern estimation accuracy, even for low-quality images with unrecognizable fuel patterns. This study verified that an AI model can be effectively employed for accurate and fast partial-defect verification of fuel assemblies.

Experimental study of noise level optimization in brain single-photon emission computed tomography images using non-local means approach with various reconstruction methods

  • Seong-Hyeon Kang;Seungwan Lee;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1527-1532
    • /
    • 2023
  • The noise reduction algorithm using the non-local means (NLM) approach is very efficient in nuclear medicine imaging. In this study, the applicability of the NLM noise reduction algorithm in single-photon emission computed tomography (SPECT) images with a brain phantom and the optimization of the NLM algorithm by changing the smoothing factors according to various reconstruction methods are investigated. Brain phantom images were reconstructed using filtered back projection (FBP) and ordered subset expectation maximization (OSEM). The smoothing factor of the NLM noise reduction algorithm determined the optimal coefficient of variation (COV) and contrast-to-noise ratio (CNR) results at a value of 0.020 in the FBP and OSEM reconstruction methods. We confirmed that the FBP- and OSEM-based SPECT images using the algorithm applied with the optimal smoothing factor improved the COV and CNR by 66.94% and 8.00% on average, respectively, compared to those of the original image. In conclusion, an optimized smoothing factor was derived from the NLM approach-based algorithm in brain SPECT images and may be applicable to various nuclear medicine imaging techniques in the future.

개인용 컴퓨터를 이용한 뇌 합성영상에 대한 재구성

  • Min, Hyeong-Gi;Nam, Sang-Hui
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.3 no.1
    • /
    • pp.110-118
    • /
    • 1997
  • Recently, to make a diagnosis of the patient different X-Ray examinations are used. To name a few, Computed Tomography(CT). Magnetic Resonance Image(MRI) Single Photon Emission Computed Tomography(SPET) and Positron Emission Tomography(PET). But diagnosticians face difficulties sometimes when they make a diagnosis with images from those examinations. One of the problem is whether the Lesions of the patient is captured in the image correctly. Another one is whether the images are taken with same angle. in this paper, a study 9 on the method to obtain the hybrid image from the different images to different examinations. The procedure done in this paper is described as future study. Although small errors in position between images would occurred, this method more useful as it does not make patients in convenient. To reconstruct a image, some images are scanned by scanner and stored to personal computer for further image processing with Aldus photostyler program. The method to generate a sharpened image are also described.

  • PDF

The Efficacy of Detecting a Sentinel Lymph Node through Positron Emission Tomography/Computed Tomography (근골격계 악성 종양 환자의 림프절 전이 발견을 위한 양전자 방출 컴퓨터 단층 촬영기(Positron Emission Tomography/Computed Tomography)의 유용성)

  • Shin, Duk-Seop;Na, Ho Dong;Park, Jae Woo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.6
    • /
    • pp.509-518
    • /
    • 2019
  • Purpose: Lymph node metastasis is a very important prognostic factor for all skin cancers and some sarcomas. A sentinel lymph node (SLN) biopsy is the most useful technique for identifying SLNs. Recently, a new generation of diagnostic tools, such as single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/CT (PET/CT) enabled the detection of SLNs. This study compared the efficacy of PET/CT for detecting lymph node metastases with a SLN biopsy in a single medical center. Materials and Methods: From 2008 to 2018, 72 skin cancers of sarcoma patients diagnosed with some lymph node involvement in a whole body PET/CT reading were assessed. Patients suspected of lymph node metastasis were sent to biopsy and those suspected to be reactive lesions were observed. The analysis was performed retrospectively using the medical records, clinical information, PET/CT readings, and pathology results. Results: The age of patients ranged from 14 to 88 years and the mean follow-up period was 2.4 years. Twenty-two patients were suspected of a lymph node metastasis and confirmed. The sensitivity, specificity, positive predictive value and negative predictive value of PET/CT images in sarcoma and non-sarcoma tumors were increased significantly when the expert's findings were considered together. Conclusion: PET/CT is effective in detecting lymph node metastases.