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a b s t r a c t

Single-photon emission computed tomography is one of the reliable pin-by-pin verification techniques
for spent-fuel assemblies. One of the challenges with this technique is to increase the total fuel assembly
verification speed while maintaining high verification accuracy. The aim of the present study, therefore,
was to develop an artificial intelligence (AI) algorithm-based tomographic image analysis technique for
partial-defect verification of fuel assemblies. With the Monte Carlo (MC) simulation technique, a
tomographic image dataset consisting of 511 fuel-rod patterns of a 3 � 3 fuel assembly was generated,
and with these images, the VGG16, GoogLeNet, and ResNet models were trained. According to an
evaluation of these models for different training dataset sizes, the ResNet model showed 100% pattern
estimation accuracy. And, based on the different tomographic image qualities, all of the models showed
almost 100% pattern estimation accuracy, even for low-quality images with unrecognizable fuel patterns.
This study verified that an AI model can be effectively employed for accurate and fast partial-defect
verification of fuel assemblies.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The International Atomic Energy Agency (IAEA) has been
developed single-photon emission computed tomography (SPECT)
for a reliable pin-by-pin spent-fuel assembly verification owing to
its intuitive imaging capability [1e3]. Unlike the conventional
volume-averaging method for measurement of spent-fuel assem-
bly radioactivity, SPECT can verify partial defects by acquiring a
tomographic image of the assembly and analyzing the radioactivity
distribution of the fuel rods therein [4e9]. The IAEA set a goal time
for the measurement per assembly with the prototype SPECT sys-
tem, named Passive Gamma Emission Tomography (PGET), as less
than 10 min in 2006 for the fuel with a minimum burn-up of 15
GWd/t and a cooling time up to 40 years [4,5]. On the other hand,
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Miller et al. [9] reported that the total assay times for the pin-by-pin
spent-fuel assembly verification, consistent with IAEA's concept of
operations in 2017, were approximately 1e2 h. Nevertheless, still,
there are limitations to achieving this time goal with the conven-
tional SPECT system [9], due to various measurement conditions
affecting tomographic image quality such as different cooling times
and characteristics of fuel assembly geometry.

Our previous Monte Carlo (MC) study [10] showed that clearly
acquiring a tomographic image for the 137Cs nuclide emitting
662 keV gamma-rays is difficult in water storage, due to the high
probability of attenuation and scattering by water and the high-Z
materials of fuel rods. Furthermore, if the scanning speed of the
SPECT technique for fuel assembly verification is increased to
achieve the IAEA's inspection time goal, the overall amount of
measurement data will be reduced, leading to image distortion.
Recently, artificial intelligence (AI)-based image processing and
analysis techniques have been actively investigated and verified for
accuracy [11]. They can help to overcome the above-noted limita-
tions, specifically by learning the correlations between the char-
acteristics of image acquisition under specific conditions and the
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resulting image. The aim of this study, therefore, was to develop a
tomographic image analysis technique for partial-defect verifica-
tion in a fuel assembly, as based on AI algorithms well known in the
visual recognition research area.
2. Materials and methods

2.1. Tomographic image dataset of fuel assembly

MC simulation enables statistical radiation transport analysis
using random numbers. With its realistic estimation of specific
physical phenomena, it can be an alternative to experimentation
performed with high-cost equipment. Using GATE (v. 8.1) MC
simulation program [10], we modeled a rotational SPECT system
consisting of four 64-channel detectors and used it to obtain pro-
jection data for a test fuel assembly (Fig. 1). Each detector consisted
of 64 trapezoidal-shaped 3 � 40� 40 (front side) and 3 (back side)
mm3 BGO scintillators along with a tungsten collimator with 64 2�
50� 40 mm3 slits. The distance between the detector surface and
the fuel assembly center was 220 mm. The fuel assembly was
comprised of 3 � 3 fuel-rod arrays positioned at 12.69 mm in-
tervals, the fuel-rod diameter being 9.94 mm. Based on the energy
spectrum data reported by Pacific Northwest National Laboratory in
2016 [8], we determined the characteristics of the gamma-rays
emitting from each fuel rod by assuming the spent-fuel burn-up
and cooling times to be 10327 MWd/MTU and 5 years, respectively.
In this assembly condition, the relative atom densities of 134Cs,
137Cs, and 154Eu, emitting 604.7e1274.4 keV gamma-rays, were
5.1%, 100%, and 0.8%, respectively [8]. The predominant energy of
the gamma-rays was 662 keV, because the major radionuclide of
the spent fuel was 137Cs, owing to its long half-life (about 30 years).
A total of 511 tomographic images were acquired for 29-1 patterns
of missing fuel rods in the 3 � 3 fuel assembly, under the
assumption that all fuel rods have the same radioactivity. The fuel
rods consisted of UO2 (10.519 g/cm3), ZIRLO (6.578 g/cm3), and He
gas (2.222 mg/cm3). For a 17 � 17 fuel assembly, the number of
patterns of missing fuel rods is 2289-1, and there are currently
limitations on obtaining MC simulation data for such a large
number of patterns. Therefore, in this study, we employed the 3� 3
fuel assembly for proof-of-principle purposes. Each image was
Fig. 1. MC simulation conditions for acquisition of tomographic images of various patterns o
channel detectors.
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reconstructed within a 64� 64-pixel dimensions by a filtered back-
projection (FBP) algorithm, using 400 projection datasets obtained
in 0.9� increments during 360� of rotation (i.e. sinogram).
2.2. Determination of AI models

In this study, VGG16, GoogLeNet, and ResNet models were
selected from among various AI models that have been developed
to deliver higher image classification accuracy with lower power
consumption over the past decade. VGG16 and GoogLeNet are deep
learning models proposed by Oxford University's Visual Geometry
Group (VGG) and Google, respectively, in 2014. These models
showed that a deeper-layer structure offers advantages in terms of
the image recognition performance of the deep learning model [12]
when compared with previous high-performance models consist-
ing of eight layers such as AlexNet [13]. Unlike other types of
convolutional neural networks (CNN) that use filters of various
local receptive fields, VGG16 simply uses filters of 3 � 3 local
receptive fields in all convolution layers. Its advantage is its capacity
to not only reduce the number of parameters in the training process
but also improve model performance through its deep hierarchical
structure, specifically by extracting more nonlinear features as the
number of convolution operations increases [14]. GoogLeNet con-
sists of 22 layers and requires 5 million parameters during opera-
tion [15]: 2.75-times deeper layers and about 0.08-times smaller
parameters than those of AlexNet [13]. GoogLeNet's computational
efficiency, moreover, is higher than that of AlexNet, thanks to its
inception module that efficiently extracts various features through
a parallel (not in-series) connection of convolution operations. In
fact, GoogLeNet has nine inception modules using filters of 1 � 1,
3 � 3, and 5 � 5 local receptive fields. In order to solve the gradient
vanishing problem in which the gradient gradually converges to
zero in the process of backpropagation, GoogLeNet is equipped
with auxiliary classifiers in the middle of its hierarchical structure
[15e17]. These auxiliary classifiers are used only for model training
and are removed after training is completed. When the auxiliary
classifiers are applied to training, the slope of the weight change
tends to vary according to the number of iterative operations in the
training process, resulting in more stable learning outcomes. The
ResNetmodel, structured based on VGG19, is a deep learningmodel
f fuel rods within 3 � 3 array emitting 662 keV gamma-rays, using rotational four 64-
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developed by Microsoft Research in 2015. ResNet, applied with a
residual learning method that provides a shortcut for adding of
input values to the output value, was proposed in order to over-
come the limitation, discovered by Microsoft's researchers, that
deepening of the hierarchical structure in the deep learning model
does not necessarily improve performance [18]. The hierarchical
structure of the previously developed CNN model focused on
finding the optimal function H(x) that can convert the input value x
to the target value y, and conducted learning in the direction of
minimizing ‘H(x)-y’. ResNet, by contrast, focuses on minimizing
'H(x)-x' based on the fact that y can be represented as x. In this
manner, residual learning can proceed by minimizing 'F(x) ¼ H(x)-
x', the residual of the input value and the output value (H(x)), and
the output value can be defined as 'H(x)¼ F(x)þ x'. Further, ResNet
uses a skip connection method whereby the output of one specific
layer skips several layers and is added to the input of the next layer
for more efficient operation that does not entail any increase in the
number of parameters. This contrasts with the VGG models, by
which only the output value of a specific layer is used as the input
value in the next layer. Based on these structural characteristics, the
deeper hierarchy of ResNet affords better performance.

All three models (VGG16, GoogLeNet, ResNet) consist of a fairly
deep and complex structure for high-performance image recogni-
tion or classification suitable to the complex pattern and color map
of the CIFAR-10 dataset consisting of 60000 color images in 10
classes with 50000 training images and 10000 test images. How-
ever, the models’ training procedures for the CIFAR-10 dataset
would incur huge computational costs and take much time. In the
present study, the pattern and color map of the tomographic image
of the 3 � 3 fuel assembly were relatively quite simple, and
correspondingly, the structures of the VGG16, GoogLeNet, and
ResNet models were simplified to reduce the numbers of parame-
ters required for model training while maintaining the character-
istics of each model. The structure of VGG16 was converted from
five unit modules to three modules, and then the number of pa-
rameters required for training was reduced by 85% from
138,356,392 to 21,810,345. Accordingly, the training time was
reduced by about a factor of 40. Meanwhile, the structure of Goo-
gLeNet was converted from nine unit modules to two modules, and
then the number of parameters required for training was reduced
by 98% from 10,324,683 to 208,817. Accordingly, the training time
was reduced by about 55 times. Finally, the structure of ResNet was
converted from four unit modules to two modules, with one
shortcut in the residual learning process, and then the number of
parameters required for training was reduced by 37% from
23,546,761 to 14,871,665. Accordingly, the training time was
reduced by about 17 times.

2.3. AI-based fuel-rod pattern analysis of tomographic images

The VGG16, GoogLeNet, and ResNet models were trained for
analysis of fuel-rod patterns on low-quality tomographic images of
a 3 � 3 fuel assembly. The fuel-rod patterns were assessed by
analyzing averaged image intensities in nine regions of interest
(ROIs) where the nuclear fuel rods were located in the 3 � 3 array
(as illustrated in Fig. 2) and by predicting fuel-rod presence in each
ROI. As illustrated in Fig. 3, the three AI models were trained for ten
different conditions using an image dataset consisting of low-
quality images reconstructed by the FBP algorithm (as FBP im-
ages) and ground truth (GT) images showing the actual pattern of
fuel rods in the assembly. The five conditions for training of the
three AI models were the five different FBP-GT image dataset sizes,
which ranged from 100 to 500 image sets arbitrarily extracted from
the total of 511 image sets. Under these five conditions, tomo-
graphic images were acquired by scanning the 3 � 3 fuel assembly
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for 450 s with the SPECT system. Five additional conditions were
the five different FBP image qualities obtained with five different
SPECT system scan times ranging from 450 to 4500 s. As the scan
time was shortened, the noise level of the FBP images was
increased and the fuel-rod patterns on those images became dis-
torted. Under these five scan time conditions, the 500 randomly
extracted FBP-GT image sets were used for model training. For
optimization of model training, the Adam algorithm was used, and
the learning rate was set to 0.0001. A total of 50 epochs were set for
each of the three AI models. Using the AI model trained under each
condition, the fuel-rod pattern recognition accuracy was evaluated
for the rest of the 11 FBP images, except for those used in training,
ten times.

3. Results and discussion

3.1. AI model performance according to data size

In this study, we used the 3 � 3 fuel-rod array to verify the
feasibility of fuel-rod pattern estimation with an AI model by
analyzing the averaged image intensities of the nine ROIs.
Compared with the full size of the fuel assembly, a 17 � 17 array of
fuel rods, the 3 � 3 array was small enough to generate tomo-
graphic images for all of the 511 (29-1) patterns with the MC
simulation, which fact enabled us, moreover, to train the AI model
with most of the images. However, for the full-size fuel assembly,
considerable computational cost is incurred in generating tomo-
graphic images for all 9.95eþ86 (2289-1) patterns and in training
the AI models. Therefore, we evaluated how the pattern estimation
accuracy of the three AI models changed according to model
training with different image datasets for percentages of the total
511 patterns ranging from about 20 to 98%. The reason for using
training images of the lowest quality as obtained for 450 s scan time
was to examine the dramatic changes in the pattern estimation
accuracy of the AI models. Table 1 shows the evaluation results for
the estimation accuracy of fuel-rod presence in each ROI on the
tomographic image for the three AI models trained with the five
different image set sizes. For the 500 image set, representing 98% of
the total number of fuel-rod patterns, all of the AI models suc-
cessfully estimated the presence or absence of fuel rods in the nine
ROIs with 100% accuracy. It was difficult to compare the results in
relation to the unique characteristics of the three AI models,
because their parameter reduction rates are different. However,
even though the number of parameters used in the training process
for ResNet was about 32% less than that for VGG16, relatively better
results were derived in terms of AI model performance. Therefore,
the ResNet model can be advantageous to employ for future veri-
fication studies with fuel assemblies larger than 3� 3. And because
of the difficulty of generating a training image dataset for a larger
size of fuel assembly by MC simulation, in a future study, we will
apply a data-augmentation technique based on the structural
symmetry of the assembly.

3.2. AI model performance according to image quality

Through this study, our ultimate goal is to develop a technique
of fast verification by acquisition of a tomographic image of a spent-
fuel assembly. Generally, the faster the scan speed of the SPECT
system is, the worse the image quality will be. Therefore, it was
necessary for us to evaluate the three AI models in order to
determine if they can accurately verify fuel-rod patterns in tomo-
graphic images when image quality is degraded to certain extents.
Fig. 4 shows the five images reconstructed by the FBP algorithm
using multiple projection data obtained with a rotating SPECT
system for 450, 1125, 2250, 3375, and 4500 s for the fuel-rod



Fig. 2. Tomographic image intensity analysis within 3 � 3 region of interest (ROI) for fuel-rod discrimination.

Fig. 3. Performance evaluation of three artificial intelligence models (VGG16, GoogLeNet, ResNet) trained with five different tomographic image set sizes and five different
tomographic image qualities for fuel-rod pattern analysis.

Table 1
Performance evaluation of VGG16, GoogLeNet, and ResNet models trained with five different tomographic image set sizes (100, 200, 300, 400, 500 images).

Accuracy of fuel rod discrimination (%) Ave.

Image # for AI training AI Model ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 ROI 7 ROI 8 ROI 9

100 VGG16 90.8 86.1 69.1 99.3 70.3 95.9 98.8 92.7 83.2 87.3
GoogLeNet 46.7 48.2 43.3 53.3 43.6 43.3 44.5 75.9 43.3 49.1
ResNet 100 100 100 100 100 100 100 100 100 100

200 VGG16 96.1 81.7 84.9 99.0 72.3 72.7 97.4 96.1 83.3 87.0
GoogLeNet 89.4 38.6 37.9 52.7 81.4 72.0 41.2 76.8 67.5 61.9
ResNet 100 100 100 100 100 100 100 100 100 100

300 VGG16 98.6 100 87.7 100 96.7 100 99.5 91.5 99.5 97.1
GoogLeNet 86.7 57.8 83.9 45.0 86.3 73.5 59.7 82.9 91.9 75.3
ResNet 100 100 100 100 100 100 100 100 100 100

400 VGG16 100 100 95.5 98.2 100 100 100 100 96.4 98.9
GoogLeNet 100 93.7 74.8 83.8 90.1 90.1 100 90.1 89.2 90.2
ResNet 100 100 100 100 100 100 100 100 100 100

500 VGG16 100 100 100 100 100 100 100 100 100 100
GoogLeNet 100 100 100 100 100 100 100 100 100 100
ResNet 100 100 100 100 100 100 100 100 100 100

S. Seong, S. Choi, J.J. Ahn et al. Nuclear Engineering and Technology 54 (2022) 3943e3948
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Fig. 4. Five different tomographic image qualities obtained in scan times of (a) 450, (b) 1125, (c) 2250, (d) 3375, (e) 4500 s for fuel-rod pattern illustrated in (f) GT image.

Table 2
Performance evaluation of VGG16, GoogLeNet, and ResNet models trained with tomographic images of 500 fuel-rod patterns obtained within five different scan times (450,
1125, 2250, 3375, 4500 s).

Accuracy of fuel rod discrimination (%) Ave.

Scan time (sec.) AI Model ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 ROI 7 ROI 8 ROI 9

450 VGG16 100 100 100 100 100 100 100 100 100 100
GoogLeNet 100 100 100 100 100 100 100 100 100 100
ResNet 100 100 100 100 100 100 100 100 100 100

1125 VGG16 100 100 100 100 100 100 100 100 100 100
GoogLeNet 100 100 100 100 100 100 100 100 100 100
ResNet 100 100 100 100 100 100 100 100 100 100

2250 VGG16 100 100 100 100 100 100 100 100 100 100
GoogLeNet 100 100 100 100 90.9 100 100 100 100 98.9
ResNet 100 100 100 100 100 100 100 100 100 100

3375 VGG16 100 100 100 100 100 100 100 100 100 100
GoogLeNet 100 100 100 100 100 100 100 100 100 100
ResNet 100 100 100 100 100 100 100 100 100 100

4500 VGG16 100 100 100 100 100 100 100 100 100 100
GoogLeNet 100 100 100 100 100 100 100 90.9 100 98.9
ResNet 100 100 100 100 100 100 100 100 100 100
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pattern illustrated in Fig. 4(f). Table 2 shows the evaluation results
of the estimation accuracy of fuel-rod presence in each ROI on
tomographic images for the three AI models trained with five
different image dataset qualities, each dataset consisting of 500
tomographic images. The VGG16 and ResNet models successfully
estimated the presence or absence of fuel rods in the nine ROIs with
100% accuracy in all cases, while the GoogLeNet model was eval-
uated at 98.9% prediction accuracy for both scan times of 2250 and
4500 s. This result might have been due to the fact that the total
number of parameters used for training the GoogLeNet model in
3947
this study was too small, and that therefore, its performance
became unstable. Nevertheless, the overall results demonstrated
the applicability of an AI model, even for image quality so low as to
render image recognition by people difficult. In other words, an AI
model can be effectively employed to accurately verify fuel-rod
patterns using tomographic images obtained with a high-speed
scan. Based on this determination, we will employ this AI-based
pattern analysis technique for tomographic images of larger as-
semblies that may have many image artifacts due to the higher
scattering and attenuation probabilities of gamma-rays emitted
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from assembly interiors. For this, further studies are necessary not
only to optimally design an AI model but also to evaluate its per-
formance for various patterns of image artifacts on low-quality
tomographic images.

4. Conclusion

In this paper, we have proposed an artificial intelligence (AI)-
based tomographic image analysis technique that can discriminate
fuel-rod patterns, even with low-quality images acquired with a
high-speed scan. With Monte Carlo (MC) simulation as an alter-
native to experimentation, tomographic images for various fuel-rod
patterns in a 3 � 3 fuel assembly were obtained, and the pattern-
discrimination performances of the VGG16, GoogLeNet, and
ResNet AI models were evaluated. We demonstrated that these
models can effectively facilitate accurate and fast verification of fuel
assemblies.

Through our previous studies [10,11], we confirmed that the
large-sized scintillator detector than the small-sized semi-
conductor detector of PGET showed considerable higher sensitivity
even for the gamma-rays emitted by the most internal fuel rod in
the full-sized (e.g. 17 � 17) assembly stored in water storage,
furthermore, tomographic image quality can be considerably
improved with a deep learning-based de-noising technique.
Further, we will develop an advanced attenuation correction
method, accordingly, we expect that the in-house SPECT system,
named Yonsei single-photon emission computed tomography
(YSECT), is able to obtain a high-quality tomographic image of the
full-sized fuel assembly in water in the future. Then, the AI-based
tomographic image analysis technique proposed in this study can
be effectively employed for the purpose of shortening pin-by-pin
verification time. We will evaluate our image analysis technique's
availability for additional and various conditions such as the
number of fuel rods, the hierarchical depth of the AI structure, the
number of hyper-parameters, the presence or absence of artifacts
on tomographic images, and the uniformity of fuel-rod image in-
tensity on tomographic images.
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