Browse > Article
http://dx.doi.org/10.1016/j.net.2016.12.002

Comparison of Image Uniformity with Photon Counting and Conventional Scintillation Single-Photon Emission Computed Tomography System: A Monte Carlo Simulation Study  

Kim, Ho Chul (Department of Radiological Science, Eulji University)
Kim, Hee-Joung (Department of Radiological Science, Yonsei University)
Kim, Kyuseok (Department of Radiological Science, Yonsei University)
Lee, Min-Hee (Department of Biomedical Engineering, Yonsei University)
Lee, Youngjin (Department of Radiological Science, Eulji University)
Publication Information
Nuclear Engineering and Technology / v.49, no.4, 2017 , pp. 776-780 More about this Journal
Abstract
To avoid imaging artifacts and interpretation mistakes, an improvement of the uniformity in gamma camera systems is a very important point. We can expect excellent uniformity using cadmium zinc telluride (CZT) photon counting detector (PCD) because of the direct conversion of the gamma rays energy into electrons. In addition, the uniformity performance such as integral uniformity (IU), differential uniformity (DU), scatter fraction (SF), and contrast-to-noise ratio (CNR) varies according to the energy window setting. In this study, we compared a PCD and conventional scintillation detector with respect to the energy windows (5%, 10%, 15%, and 20%) using a $^{99m}Tc$ gamma source with a Geant4 Application for Tomography Emission simulation tool. The gamma camera systems used in this work are a CZT PCD and NaI(Tl) conventional scintillation detector with a 1-mm thickness. According to the results, although the IU and DU results were improved with the energy window, the SF and CNR results deteriorated with the energy window. In particular, the uniformity for the PCD was higher than that of the conventional scintillation detector in all cases. In conclusion, our results demonstrated that the uniformity of the CZT PCD was higher than that of the conventional scintillation detector.
Keywords
Medical Application; Monte Carlo Simulation; Nuclear Medicine; Photon Counting Detector; Scintillation Detector; Single-Photon Emission Computed Tomography System;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Lee, H.-J. Kim, Performance evaluation of a small CZT pixelated semiconductor gamma camera system with a newly designed stack-up parallel-hole collimator, Nucl. Instrum. Methods Phys. Res. A 794 (2015) 54-61.   DOI
2 T. Onodera, K. Hitomi, T. Shoji, Y. Hiratate, Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging, Nucl. Instrum. Methods Phys. Res. A 525 (2004) 199-204.   DOI
3 A. Konik, M.T. Madsen, J.J. Sunderland, GATE simulations of small animal SPECT for determination of scatter fraction as a function of object size, IEEE Trans. Nucl. Sci. 59 (2012) 1887-1891.   DOI
4 S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, I. Buvat, Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images, Phys. Med. Biol. 56 (2011) 6441-6457.   DOI
5 J.S. Fleming, Evaluation of a technique for simulation of gamma camera images, Phys. Med. Biol. 41 (1996) 1855-1861.   DOI
6 S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D.R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, I. Buvat, GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy, Phys. Med. Biol. 56 (2011) 881-901.   DOI
7 R.J. Jaszczak, R.E. Goleman, C.B. Lim, SPECT: single photon emission computed tomography, IEEE Trans. Nucl. Sci. NS-27 (1980) 1137-1153.
8 P.-H. Jeon, C.-L. Lee, D.-H. Kim, Y.-J. Lee, S.-S. Jeon, H.-J. Kim, Dose reduction and image quality optimizations in CT of pediatric and adult patients: phantom studies, J. Instrum. 9 (2014) P03013.   DOI
9 J.-H. Kim, Y. Choi, K.-S. Joo, B.-S. Sihn, J.-W. Chong, S.E. Kim, K.H. Lee, Y.S. Choe, B.-T. Kim, Development of a miniature scintillation camera using an NaI(Tl) scintillator and PSPMT for scintimammography, Phys. Med. Biol. 45 (2000) 3481-3488.   DOI
10 M. Moszynski, J. Zalipska, M. Balcerzyk, M. Kapusta, W. Mengesha, J.D. Valentine, Intrinsic energy resolution of NaI(Tl), Nucl. Instrum. Methods Phys. Res. A 484 (2002) 259-269.   DOI
11 Y.J. Lee, H.J. Ryu, S.W. Lee, S.J. Park, H.J. Kim, Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system, Nucl. Instrum. Methods Phys. Res. A 713 (2013) 33-39.   DOI
12 M.T. Madsen, Recent advances in SPECT imaging, J. Nucl. Med. 48 (2007) 661-673.   DOI
13 Y.-J. Lee, S.-J. Park, D.-H. Kim, H.-J. Kim, Optimization of the SPECT systems based on a CdTe pixelated semiconductor detector using novel parallel-hole collimators, J. Instrum. 9 (2014) C05057.   DOI
14 C.L. Melcher, J.S. Schweitzer, R.A. Manente, C.A. Peterson, Applications of single crystals in oil well logging, J. Cryst. Growth 109 (1991) 37-42.   DOI
15 T.E. Peterson, L.R. Furenlid, SPECT detectors: the Anger Camera and beyond, Phys. Med. Biol. 7 (2011) R145-R182.
16 M.A.K. Abdelhalim, R.A.-M. Rizk, H.I. Farag, S.M. Reda, Effect of energy window width on planer and SPECT image uniformity, J. King Saud Univ. 21 (2009) 145-150.   DOI
17 K. Ogawa, M. Muraishi, Feasibility study on an ultra-high-resolution SPECT with CdTe detectors, IEEE Trans. Nucl. Sci. 57 (2010) 17-24.   DOI
18 C. Scheiber, CdTe and CdZnTe detectors in nuclear medicine, Nucl. Instrum. Methods Phys. Res. A 448 (2000) 513-524.   DOI
19 A. Abe, N. Takahashi, J. Lee, T. Oka, K. Shizukuishi, T. Kikuchi, T. Inoue, M. Jimbo, H. Ryuo, C. Bickel, Performance evaluation of a hand-held, semiconductor (CdZnTe)-based gamma camera, Eur. J. Nucl. Med. Mol. Imaging 30 (2003) 805-811.   DOI