• Title/Summary/Keyword: Single layer

Search Result 2,880, Processing Time 0.029 seconds

Reliable multi-hop communication for structural health monitoring

  • Nagayama, Tomonori;Moinzadeh, Parya;Mechitov, Kirill;Ushita, Mitsushi;Makihata, Noritoshi;Ieiri, Masataka;Agha, Gul;Spencer, Billie F. Jr.;Fujino, Yozo;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.481-504
    • /
    • 2010
  • Wireless smart sensor networks (WSSNs) have been proposed by a number of researchers to evaluate the current condition of civil infrastructure, offering improved understanding of dynamic response through dense instrumentation. As focus moves from laboratory testing to full-scale implementation, the need for multi-hop communication to address issues associated with the large size of civil infrastructure and their limited radio power has become apparent. Multi-hop communication protocols allow sensors to cooperate to reliably deliver data between nodes outside of direct communication range. However, application specific requirements, such as high sampling rates, vast amounts of data to be collected, precise internodal synchronization, and reliable communication, are quite challenging to achieve with generic multi-hop communication protocols. This paper proposes two complementary reliable multi-hop communication solutions for monitoring of civil infrastructure. In the first approach, termed herein General Purpose Multi-hop (GPMH), the wide variety of communication patterns involved in structural health monitoring, particularly in decentralized implementations, are acknowledged to develop a flexible and adaptable any-to-any communication protocol. In the second approach, termed herein Single-Sink Multi-hop (SSMH), an efficient many-to-one protocol utilizing all available RF channels is designed to minimize the time required to collect the large amounts of data generated by dense arrays of sensor nodes. Both protocols adopt the Ad-hoc On-demand Distance Vector (AODV) routing protocol, which provides any-to-any routing and multi-cast capability, and supports a broad range of communication patterns. The proposed implementations refine the routing metric by considering the stability of links, exclude functionality unnecessary in mostly-static WSSNs, and integrate a reliable communication layer with the AODV protocol. These customizations have resulted in robust realizations of multi-hop reliable communication that meet the demands of structural health monitoring.

Magnetism of Pd(111) Thin Films: A First-principles Calculation (Pd(111) 박막의 자성: 제일원리계산)

  • Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Pd has the highest magnetic susceptibility among single element metals and often shows ferromagnetism under some special environments. In this paper, we report magnetism of 5- and 9-monolayers (ML) calculated by using full-potential linearized augmented plane wave method. Exchange-correlation interaction is taken into account in local density approximation (LDA) and generalized gradient approximation (GGA) and calculational results in LDA and GGA are compared with each other. It is found that calculations by LDA are more reliable compared to those by GGA because LDA prediction of paramagnetism of bulk Pd is consistent with experiments, whereas GGA predicts wrongly ferromagnetim of bulk Pd. Calculational results in LDA on a 5-ML Pd(111) thin film shows a ferromagnetic ground state unlike a paramagnetic ground state of bulk Pd. The center Pd layer of the 5-ML Pd(111) thin film has the largest magnetic moment ($0.273{\mu}_B$) among the layers and |m| = 1 orbital states play a dominant role in stabilizing the ferromagnetism of the 5-ML Pd(111) thin film. A 9-ML Pd(111) thin film in a ferromagnetic state has almost the same total energy as in a paramagnetic state. Since the magnetization of the 9-ML Pd(111) thin film is stable, the ferromagnetic state may be meta-stable.

Photovoltaic Properties of MEH-PPV/DFPP Blend Devices Based on Novel n-type Polymer DFPP (새로운 n형 고분자인 DFPP 기반의 MEH-PPV/DFPP Blend 소자의 광전특성)

  • Kim, Su-Hyun;Moon, Ji-Sun;Lee, Jae-Woo;Lee, Seok;Kim, Sun-Ho;Byun, Young-Tae;Kim, Dong-Young;Lee, Chang-Jin;Kim, Eu-Gene;Chung, Young-Chul;Rie, Kung-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.461-468
    • /
    • 2006
  • Optical characteristics in polymer films of MEH-PPV/DFPP blends were for the first time investigated. DFPP (N, N'-diperfluorophenyl-3,4,9,10-perylenetetracarboxylic diimide) used here was a novel n-type polymer, which had good stability in air and solubility in common solvents. For a 1:9 DFPP:MEH-PPV blend, highly efficient quenching of photoluminescence (PL) was observed. In addition, the photocurrent responses of these MEH-PPV/DFPP photovoltaic cells were measured. When the light intensity was $50mW/cm^2$, short-circuit photocurrent densities were two times higher than those of single layer MEH-PPV devices.

Effect of Juvenile Hormone Analogs on Silkworm, Bombyx mori L. I. Effect of Juvenile Hormone Analog ″R-20458″on Increase of Silk Productivity by Topical Application (유약홀몬에 관한 연구 I. 유사 합성유약홀몬 ″R-20458″에 대한 증사효과)

  • 마영일;이상풍;홍기원;손기욱
    • Journal of Sericultural and Entomological Science
    • /
    • v.20 no.2
    • /
    • pp.20-25
    • /
    • 1978
  • Research on the hormones of insect has followed by the special opportunities and problems arising from pollution. Since then, the main frame of it has been energetically exploited by ligation, decapitation and so on. In the meanwhile, knowledge of the biochemistry of hormone action as well as other aspects of biochemistry in insects has been gradually disclosed. Since 1966, practical use of active analogs of the hormones has been also worked out as an insecticide and brought the features of it to the light. On the other hand, it is expected to afford the increase of silk productivity resulted from control of the fifth larval period by delaying normal development. With these regards, some of analogs have been tried to apply practically to the silkworm. One of them is "Manta" produced by Zoecon Chemical Company and it is presently used for the increase of silk productivity in Japan. Another one is "R-20458", not registered one, issued by Stuffer Chemical Company. It is still pending for the silkworm growth regulator For the possibility of practical use, two chemicals are tested on the increase of silk productivity by topical application and the obtained results are summarized as follows. 1. It is evident that the fifth larval period was extended by topical application of the tested chemicals "Manta"and "R-20458"at the fifth instar after 51 hours of the last ecdysis, ranging from 12 hours to one day, as compared to. the control 2. In survival rates, there is no significance at 5% level between control and treatments. It proved that there was no toxity to silkworm by topical aprication. 3. There is an increase of cocoon yield in both chemical treatments. It was resulted from increase of weight of single cocoon. "Manta"2.5ppm produced 22.2kg of cocoon. It is equal to 9% increase in index, as compared to that of control. In case of R-20458, the increasing rates were varied at the different concentration; 21.4kg of cocoon production with 5% increase at 5ppm, 20.9kg of it with 2% increase at 2.5ppm and 20.6kg of it with 1% increase at 1. 25ppm in index, respectively, as compared with that of control. 4. Percentage of cocoon shell was increased by topical application. In case of "Manta" 2.5ppm, it is 25.6% which is equal to 6% increase in index, as compared with that of control. For "R-20458", the increasing rates of percentage of cocoon shell were varied with the different level of chemical concentration. They are 25.0% of 4% increase at 2.5ppm, 24.9% of 3% increase at 1.25ppm and 24.7% of 3% increase at 5ppm. 15% increase was attained at "Manta" 2.5ppm in the weight of cocoon layer based on cocoon yield and percentage of cocoon shell in index, as compared with that of control. The rates for "R-20458"are 5% increase at 2.5ppm and 4% increase at 1. 25ppm in index.

  • PDF

A Study on 8 × 4 Dual-Polarized Array Antenna for X-Band Using LTCC-Based ME Dipole Antenna Structure (LTCC 기반 ME Dipole 안테나 구조를 활용한 X-Band 용 8 × 4 이중편파 배열안테나에 관한 연구)

  • Jung, Jae-Woong;Seo, Deokjin;Ryu, Jong-In
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.25-32
    • /
    • 2021
  • In this paper, the Magneto-Electric(ME) dipole array antenna with dual-polarization in the X-Band is proposed and it is implemented and measured. The proposed array antenna is composed of 32 single ME dipole antenna and a Teflon PCB. 1 × 1 ME dipole antenna is implemented dual-polarization by radiating vertical polarization and horizontal polarization from two pairs of radiators. 2-port feeding structures are realized by lamination process using LTCC. And, each port independently feeds the radiator through a Γ-shaped feeding strip with isolation between ports. The Teflon PCB used in the antenna array has a 4-layer structure, and 2-port is fed through the top and bottom layers. The λg/4 transformer is applied to the transmission line of the Teflon PCB for impedance matching of the arrayed antenna and the Teflon PCB, and the optimal parameters are obtained through simulation. The measured maximum antenna gains of port 1 was 18.2 dBi, Cross-pol was 1.0 dBi. And the measured maximum antenna gains of port 1 was 18.1 dBi, Cross-pol was 3.2 dBi.

Effect of O2/Ar+O2 concentration on phase stability of transparent Mn doped SnO2 monolayer film (혼합기체 O2/Ar+O2 농도 변화가 Mn 도핑된 SnO2 투명전도막의 상 안정성에 미치는 영향)

  • Kim, Taekeun;Jang, Guneik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.154-158
    • /
    • 2021
  • The optical transmittance of Mn-doped SnO2 monolayer film increased gradually from 80.9 to 85.4 % at 550 nm wavelengths upon increasing the O2/Ar+O2 concentration rate from 0 to 7.9 % and the band gap energy changed from 3.0 to 3.6 eV. The resistivity tended to decrease from 3.21 Ω·cm to 0.03 Ω·cm, reaching a minimum at 2.7 %, and then gradually increased from 0.03 to 52.0 Ω·cm at higher O2/Ar+O2 gas concentration ratio. Based on XPS spectra analysis, the Sn 3d5/2 peak of Mn-doped SnO2 single layer shifted slightly from 486.40 to 486.58 and O1s peak also shifted from 530.20 to 530.33 eV with increase the O2/Ar+O2 concentration ratio. Therefore, the XPS spectra results indicate that a multiphase with SnO and SnO2 coexisted in the sputtered Mn-doped SnO2 monolayer film.

A Study of Evaluating Streetscape Green Environments to Improve Urban Street Green Spaces - A Case Study of Jeonju City - (도시가로녹지의 개선을 위한 녹화환경평가 연구 -전주시를 대상으로-)

  • Jeong, Moon-Sun;Lim, Hyun-Jeong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.3
    • /
    • pp.55-71
    • /
    • 2019
  • The purpose of this study is to propose an evaluation method to assess green environments of streetscapes to improve urban street green spaces in Jeonju City. Through a rapid assessment of urban street green spaces, we suggest an objective basis for expanding street green space as well as for adopting sustainable maintenance and improvement measures. We choose 12 sections of streetscapes (roads and sidewalks) to investigate existing street conditions which have more than four lanes and function as major road axes. Six large roads and six medium roads of Jeonju City center area are investigated as pilot assessment study sites. Site inventory checklists consist of environmental characteristics of streetscape, street tree status, and planting condition evaluation. Environmental characteristics of streetscapes are composed of physical and neighborhood factors. For instance, items for physical factors are types and width of road/sidewalks, paving materials, tree protection materials, and green strip. And surrounding landuse is a neighborhood factor. Assessment items for street tree status are street plant names (tree/shrubs/ground cover), size, and planting intervals. Planting condition evaluation items are tree shape, damage, canopy density, and planting types with existence of adjacent green space. Evaluation results are classified into three levels such as A(maintain or repair), B(greening enhancement), and C(structural improvement). In case of grade A, streetscapes have enough sidewalk width for maintaining green strip and a multi-layered planting(in large road only) with fairly good growing conditions of street trees. For grade B and C, streetscapes have a moderate level of sidewalk width with a single street tree planting. In addition, street tree growing conditions are appeared poor so that green enhancement or maintenance measures are needed. For median, only grade B and C are found as its planting growing foundations are very limited in space. As a result, acquiring enough sidewalk space is essential to enhance ecological quality of urban street green. Especially, it is necessary to have green strip with reasonable widths for plant growing conditions in sidewalks. In addition, we need to consider native species with multi-layer plant compositions while designing street green.

Application of Laser Surface Treatment Technique for Adhesive Bonding of Carbon Fiber Reinforced Composites (탄소복합재 접착공정을 위한 CFRP의 레이저 표면처리 기법의 적용)

  • Hwang, Mun-Young;Kang, Lae-Hyong;Huh, Mongyoung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.371-376
    • /
    • 2020
  • The adhesive strength can be improved through surface treatment. The most common method is to improve physical bonding by varying the surface conditions. This study presents the effect of laser surface treatment on the adhesive strength of CFRP. The surface roughness was patterned using a 1064 nm laser. The effects of the number of laser shots and the direction and length of the pattern on the adhesion of the CFRP/CFRP single joint were investigated through tensile tests. Tests according to ASTM D5868 were performed, and the bonding mechanism was determined by analyzing the damaged surface after a fracture. The optimized number of the laser shots and the optimized depth of the roughness should be required to increase the bonding strength on the CFRP surface. When considering the shear stress in the tensile direction, the roughness pattern in the direction of 45° that increases the length of the fracture path in the adhesive layer resulted in an increase of the adhesive strength. The surface treatment of the bonding surface using a laser is a suitable method to acquire a mechanical bonding mechanism and improve the bonding strength of the CFRP bonding joint. The study on the optimized laser process parameters is required for utilizing the benefits of laser surface processing.

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.

Multi-Layered Sintered Porous Transport Layers in Alkaline Water Electrolysis (다층 소결메쉬 확산체를 이용한 알칼라인 수전해 셀)

  • YEOM, SANG HO;YUN, YOUNG HWA;CHOI, SEUNGWOOK;KWON, JIHEE;LEE, SECHAN;LEE, JAE HUN;LEE, CHANGSOO;KIM, MINJOONG;KIM, SANG-KYUNG;UM, SUKKEE;KIM, CHANG-HEE;CHO, WON CHUL;CHO, HYUN-SEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.442-454
    • /
    • 2021
  • The porous transport layer (PTL) is essential to effectively remove oxygen and hydrogen gas from the electrode surface at high current density operation conditions. In this study, the effect of PTL with different characteristics such as pore size, pore gradient, interfacial coating was investigated by multi-layered sintered mesh. A water electrolysis single cell of active area of the 34.56 cm2 was constructed, and IV performance and impedance analysis were conducted in the range of 0 to 2.0 A/cm2. It was confirmed that the multi-layered sintered mesh PTL, which have an average pore size of 25 to 57 ㎛ and a larger pore gradient, removed bubbles effectively and thus seemed to improve IV performance. Also, it was confirmed that the catalytic metals such as Ni, NiMo coating on the PTL reduced activation overpotential, but increased mass transport overpotential.