Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.6.442

Multi-Layered Sintered Porous Transport Layers in Alkaline Water Electrolysis  

YEOM, SANG HO (Hydrogen Research Department, Korea Institute of Energy Research)
YUN, YOUNG HWA (Hydrogen Research Department, Korea Institute of Energy Research)
CHOI, SEUNGWOOK (Platform Technology Laboratory, Korea Institute of Energy Research)
KWON, JIHEE (Platform Technology Laboratory, Korea Institute of Energy Research)
LEE, SECHAN (Hydrogen Research Department, Korea Institute of Energy Research)
LEE, JAE HUN (Hydrogen Research Department, Korea Institute of Energy Research)
LEE, CHANGSOO (Hydrogen Research Department, Korea Institute of Energy Research)
KIM, MINJOONG (Hydrogen Research Department, Korea Institute of Energy Research)
KIM, SANG-KYUNG (Hydrogen Research Department, Korea Institute of Energy Research)
UM, SUKKEE (Department of Mechanical Engineering, Hanyang University)
KIM, CHANG-HEE (Hydrogen Research Department, Korea Institute of Energy Research)
CHO, WON CHUL (Hydrogen Research Department, Korea Institute of Energy Research)
CHO, HYUN-SEOK (Hydrogen Research Department, Korea Institute of Energy Research)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.6, 2021 , pp. 442-454 More about this Journal
Abstract
The porous transport layer (PTL) is essential to effectively remove oxygen and hydrogen gas from the electrode surface at high current density operation conditions. In this study, the effect of PTL with different characteristics such as pore size, pore gradient, interfacial coating was investigated by multi-layered sintered mesh. A water electrolysis single cell of active area of the 34.56 cm2 was constructed, and IV performance and impedance analysis were conducted in the range of 0 to 2.0 A/cm2. It was confirmed that the multi-layered sintered mesh PTL, which have an average pore size of 25 to 57 ㎛ and a larger pore gradient, removed bubbles effectively and thus seemed to improve IV performance. Also, it was confirmed that the catalytic metals such as Ni, NiMo coating on the PTL reduced activation overpotential, but increased mass transport overpotential.
Keywords
Alkaline water electrolysis; Porous transport layers; Mass transport overpotential; Porarization curve; Electrochemical impedance spectroscopy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, "A comprehensive review on PEM water electrolysis", International Journal of Hydrogen Energy, Vol. 38, No. 12, 2013, pp. 4901-4934, doi: https://doi.org/10.1016/j.ijhydene.2013.01.151.   DOI
2 Jude O. Majasan, F. Iacoviello, I. S. Cho, M. Maier, X. Lu, T. P. Neville, I. Dedigama, P. R. Shearing, and D. J.L. Brett, "Correlative study of microstructure and performance for porous transport layers in polymer electrolyte membrane water electrolysers by X-ray computed tomography and electrochemical characterization", International Journal of Hydrogen Energy, Vol. 44, No. 36, 2019, pp. 19519-19532, doi: https://doi.org/10.1016/j.ijhydene.2019.05.222.   DOI
3 C. H. Lee, R. Banerjee, F. Arbabi, J. Hinebaugh, and A. Bazylak, "Porous transport layer related mass transport losses in polymer electrolyte membrane electrolysis: a review", International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016, doi: https://doi.org/10.1115/ICNMM2016-7974.   DOI
4 I. Hiroshi, M. Tetsuhiko, A. Nakano, H. Chul, I. Masayoshi, K. Atsushi, and Y. Tetsuya, "Experimental study on porous current collectors of PEM electrolyzers", International Journal of Hydrogen Energy, Vol. 37, No. 9, 2012, pp. 7418-7428, doi: https://doi.org/10.1016/j.ijhydene.2012.01.095.   DOI
5 L. Chang, C. Marcelo, B. Guido, E. Andreas, L. Thomas, Y. James, S. Tom, S. Detlef, and L. Werner, "Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers", Electrochemistry communications, Vol. 97, 2018, pp. 96-99, doi: https://doi.org/10.1016/j.elecom.2018.10.021.   DOI
6 B. Luca, C. Alvin, H. David, L. Franz, M. Ben, and S. Eleanor, "Study on development of water electrolysis in the EU", E4tech, 2014, pp. 1-160. Retrieved from https://www.fch.europa.eu/sites/default/files/FCHJUElectrolysisStudy_FullReport%20(ID%20199214).pdf.
7 O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Fewa, "Future cost and performance of water electrolysis: an expert elicitation study", International Journal of Hydrogen Energy, Vol. 42, No. 52, 2017, pp. 30470-30492, doi: https://doi.org/10.1016/j.ijhydene.2017.10.045.   DOI
8 K. S. Shiva and V. Himabindu, "Hydrogen production by PEM water electrolysis-a review", Materials Science for Energy Technologies, Vol. 2, No. 3, 2019, pp. 442-454, doi: https://doi.org/10.1016/j.mset.2019.03.002.   DOI
9 S. Maximilian, T. Geert, C. Marcelo, L. Wiebke, M. Martin, and S. Detlef, "Acidic or alkaline? Towards a new perspective on the efficiency of water electrolysis", Journal of the Electrochemical Society, Vol. 163, No. 11, 2016, pp. F3197-F3208, doi: https://doi.org/10.1149/2.0271611jes.   DOI
10 J. Lee, C. Lee, K. Fahy, P. Kim, K. Krause, J. LaManna, E. Baltic, D. Hussey, D. Jacobson, and A. Bazylak, "Accelerating bubble detachment in porous transport layers with patterned throughpores", ACS Applied Energy Materials, Vol. 3, No. 10, 2020, pp. 9676-9684, doi: https://doi.org/10.1021/acsaem.0c01239.   DOI
11 S. H. Kang, S. J. Choi, and J. W. Kim, "Analysis of the world energy status and hydrogen energy technology R&D of foreign countries", Trans Korean Hydrogen New Energy Soc, Vol. 18, No. 2, 2007, pp. 216-223. Retrieved from https://www.koreascience.or.kr/article/JAKO200721036737451.pdf.
12 M. R. Kraglund, "Alkaline membrane water electrolysis with non-noble catalysts", Energy, Vol. 13, 1988, pp. 141-150. Retrieved from https://core.ac.uk/download/pdf/131523537.pdf.   DOI
13 M. B. I. Janjua and R. L. Le Roy. "Electrocatalyst performance in industrial water electrolysers", International Journal of Hydrogen Energy, Vol. 10, No. 1, 1985, pp. 11-19, doi: https://doi.org/10.1016/0360-3199(85)90130-2.   DOI
14 O. Panchenko, E. Borgardt, W. Zwaygardt, F. J. Hackemuller, M. Bram, N. Kardjilov, and W. Lehnert, "In-situ two-phase flow investigation of different porous transport layer for a polymer electrolyte membrane (PEM) electrolyzer with neutron spectroscopy", Journal of Power Sources, Vol. 390, 2018, pp. 108-115, doi: https://doi.org/10.1016/j.jpowsour.2018.04.044.   DOI
15 S. A. Grigoriev, P. Millet, S. A. Volobuev, and V. N. Fateev, "Optimization of porous current collectors for PEM water electrolysers", International Journal of Hydrogen Energy, Vol. 34, No. 11, 2009, pp. 4968-4973, doi: https://doi.org/10.1016/j.ijhydene.2008.11.056.   DOI
16 X. Tang, L. Xiao, C. Yang, J. Lu, and L. Zhuang, "Noble fabrication of Ni-Mo cathode for alkaline water electrolysis and alkaline polymer electrolyte water electrolysis", International Journal of Hydrogen Energy, Vol. 39, No. 7, 2014, pp. 3055-3060, doi: https://doi.org/10.1016/j.ijhydene.2013.12.053.   DOI
17 F. Marangio, M. Santarelli, and M. Cali, "Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production", International Journal of Hydrogen Energy, Vol. 34, No. 3, 2009, pp. 1143-1158, doi: https://doi.org/10.1149/2.0271611jes.   DOI
18 M. Conte, A. Iacobazzi, M. Ronchetti, and R. Vellone, "Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives", Journal of Power Sources, Vol. 100, No. 1-2, 2001, pp. 171-187, doi: https://doi.org/10.1016/S0378-7753(01)00893-X.   DOI
19 B. Jorn and T. Turek, "Alkaline water electrolysis powered by renewable energy: a review", Processes, Vol. 8, No. 2, 2020, pp. 248, doi: https://doi.org/10.3390/pr8020248.   DOI
20 H. S. Choi, D. S. Yim, C. H. Rhyu, J. C. Kim, and G. J. Hwang, "Study on the electrode characteristics for the alkaline water electrolysis", Trans Korean Hydrogen New Energy Soc, Vol. 23, No. 2, 2012, pp. 117-124, doi: https://doi.org/10.7316/KHNES.2012.23.2.117.   DOI
21 G. Schiller, R. Henne, and V. Borck, "Vacuum plasma spraying of high-performance electrodes for alkaline water electrolysis", JTST, Vol. 4, 1995, pp. 185-194, doi: https://doi.org/10.1007/BF02646111.   DOI
22 H. I. Lee, M. Mehdi, S. K. Kim, H. S. Cho, M. J. Kim, W. C. Cho, Y. W. Rhee, and C. H. Kim, "Advanced zirfon-type porous separator for a high-rate alkaline electrolyser operating in a dynamic mode", Journal of Membrane Science, Vol. 616, 2020, pp. 118541, doi: https://doi.org/10.1016/j.memsci.2020.118541.   DOI
23 M. Wang, Z. Wang, X. Gong, and Z. Guo, "The intensification technologies to water electrolysis for hydrogen production -a review", Renewable and Sustainable Energy Reviews, Vol. 29, 2014, pp. 573-588, doi: https://doi.org/10.1016/j.rser.2013.08.090.   DOI
24 J. Michalski, U. Bunger, F. Crotogino, S. Donadei, G. S. Schneider, T. Pregger, K. K. Cao, and D. Heide, "Hydrogen generation by electrolysis and storage in salt caverns: potentials, economics and systems aspects with regard to the German energy transition", International Journal of Hydrogen Energy, Vol. 42, No. 19, 2017, pp. 13427-13443, doi: https://doi.org/10.1016/j.ijhydene.2017.02.102.   DOI
25 A. Ursua, L. M. Gandia, and P. Sanchis, "Hydrogen production from water electrolysis: current status and future trends", Proceedings of the IEEE, Vol. 100, No. 2, 2011, pp. 410-426, doi: https://doi.org/10.1109/JPROC.2011.2156750.   DOI