• Title/Summary/Keyword: Single domain model

Search Result 246, Processing Time 0.03 seconds

An Artificial Neural Networks Application for the Automatic Detection of Severity of Stator Inter Coil Fault in Three Phase Induction Motor

  • Rajamany, Gayatridevi;Srinivasan, Sekar
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2219-2226
    • /
    • 2017
  • This paper deals with artificial neural network approach for automatic detection of severity level of stator winding fault in induction motor. The problem is faced through modelling and simulation of induction motor with inter coil shorting in stator winding. The sum of the absolute values of difference in the peak values of phase currents from each half cycle has been chosen as the main input to the classifier. Sample values from workspace of Simulink model, which are verified with experiment setup practically, have been imported to neural network architecture. Consideration of a single input extracted from time domain simplifies and advances the fault detection technique. The output of the feed forward back propagation neural network classifies the short circuit fault level of the stator winding.

Experimental Study on Equivalent Linear System for Rotational friction Damper (회전마찰감쇠기의 등가선형시스템에 관한 실험적 연구)

  • 김형섭;박지훈;민경원;이상현;이명규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.296-303
    • /
    • 2004
  • In this study, equivalent linear damping and stiffness of a single-degree-of-freedom (SDOF) structure with a rotational friction damper are estimated using the result of experiments and compared with those obtained from non-linear time history analyses. First, the transfer function of the test model is constructed and then the equivalent stiffness and damping are calculated, using the half-power bandwidth (HPB) method. For comparative study, those properties are estimated based on stochastic theory in the time domain. Both equivalent linear systems identified from experiments and numerical analyses correspond well. Further, it is observed that there exists an optimal clamping force on the rotational friction damper from estimated equivalent damping.

  • PDF

BB-BC optimization algorithm for structural damage detection using measured acceleration responses

  • Huang, J.L.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.353-360
    • /
    • 2017
  • This study presents the Big Bang and Big Crunch (BB-BC) optimization algorithm for detection of structure damage in large severity. Local damage is represented by a perturbation in the elemental stiffness parameter of the structural finite element model. A nonlinear objective function is established by minimizing the discrepancies between the measured and calculated acceleration responses (AR) of the structure. The BB-BC algorithm is utilized to solve the objective function, which can localize the damage position and obtain the severity of the damage efficiently. Numerical simulations have been conducted to identify both single and multiple structural damages for beam, plate and European Space Agency Structures. The present approach gives accurate identification results with artificial measurement noise.

Secondary Steady Flows Due to the Small-Amplitude In-Phase Oscillation of Multi-Cylinders (다수의 주상체들의 저진폭 동위상 진동에 의한 2차 정상유동 해석)

  • Kim, Seong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.649-658
    • /
    • 1996
  • Small-amplitude harmonic oscillations of multi-cylinders are considered both experimentally and theoretically. For the theoretical model, the flow regime is separated into inner and outer regions. In the inner region, the flow is governed by the generalized Stokes boundary layer equation. In the outer region, the full Navier-Stokes equation for the steady streaming flow is solved numerically by using ADI scheme and FVM coupled with the boundary integral method. Flow visualization experiments are conducted by using the Laser Sheet Image Technique. The case of two circular cylinders and square cylinders with variable distances are chosen as a typical example. Although experimental results are based on the flow in the finite domain, both experimental and numerical results agree well qualitatively. As the separation of cylinders is increased, a numerical result shows the asymptotic convergence to a single cylinder case.

Transient Stability Assessment Using Improved SIME (개선된 SIME법을 이용한 과도 안정도 평가)

  • Lee, Jong-Seock;Ahn, Tae-Hyung;Yang, Jung-Dae;Lee, Byong-Jun;Kwon, Sae-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.258-260
    • /
    • 1999
  • The Single Machine Equivalent(SIME) is a hybrid method resulting from the coupling of a time-domain program with the equal-area criterion. This paper presents the efficient filtering algorithm using improved SIME for Transient Stability Assessment. The main feature of the method is cascading contingency filtering. First contingency filtering is conducted by using the first-swing stability of equivalent One Machine Infinite Bus(OMIB) system. This stability is evaluated by checking its time trajectory. Selected cases through the first step are assessed on the second step using SIME under the detailed model of power systems. The efficiency of the algorithm is tested on PSS/E test system.

  • PDF

Robot Velocity Kinematics by Closed-loop Chain and ICC (폐루프 체인 및 순간 일치 좌표계를 사용한 로봇의 속도 기구학)

  • 신동헌
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.103-111
    • /
    • 2003
  • The Denavit-Hartenberg symbolic notation provides the framework for the convenient and systematic method for the robot manipulator kinematics, but is limited its use to the lower pair mechanism or to the single loop mechanisms. The Sheth-Uicker notation is its revised and generalized version to be extended fur the entire domain of the link mechanism including the higher pairs. This paper proposes the method that uses the Sheth-Uicker notation fur the robot kinematics modeling. It uses the instantly coincident coordinate system and the closed loop chain fur the coordinate transformation. It enables us to model the velocity kinematics of the robot that has the complex structures such as the ternary links and the wheels in a systematic and rational way. As an implementation of the proposed method, the Jacobian matrices were obtained for not only the robot with two legs and a torso, but a manipulator on a mobile platform.

A study of integral equations for the analysis of scattered acoustic field (산란음장 해석을 위한 적분방정식에 대한 연구)

  • Wonju Jeon;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1016-1019
    • /
    • 2002
  • This paper deals with a fundamental and classical scattering problem by a finite strip. For the analysis of scattered acoustic field, a “single” integral equation is derived. Firstly, the complexity by considering the effect of the mean flow is alleviated by the introduction of Prandtl-Glauert coordinate and the new dependent variable. Secondly, the difficulty of solving the resultant strongly-coupled integral equations which always appear in this kind of 3-part mixed boundary value problem is solved by observing some good properties of the functions in complex domain and manipulating the equations and variables for the use of those properties. The solution can be obtained asymptotically in terms of gamma function and Whittaker function. One aim of this study is the improvement of methodology for the research using integral equations. The other is the basic understanding of scattering by a finite strip related to the linear cascade model of rotating fan blades.

  • PDF

Vibration Analysis of Pipes Considering Fluid Pulsation (유체맥동을 고려한 배관계의 진동해석)

  • Seo, Young-Soo;Jeong, Seok-Hyeon;Lee, Seong-Hyeon;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1050-1056
    • /
    • 2006
  • In this paper, a new method for the stability analysis of a pipe conveying fluid which pulsates periodically is presented. The finite element model is formulated liking into consideration of the effects of the fluid pulsating in a pipe. The damping and stiffness matrices in the finite element equation vary with time due to pulsating fluid. Coupled effects of several harmonic components in the velocity of fluid to a pipe is discussed. A new unstable region appears which will not appear in the stability analysis of single pulsating frequency. A method to directly estimate the forced response of pipe is also discussed. The results presented in this paper are verified by the time domain analysis.

Simulation and Measurement of Thermal Ablation in a Tissue-Mimicking Phantom and Ex-Vivo Porcine Liver by Using High Intensity Focused Ultrasound

  • Lee, Kang Il
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1289-1294
    • /
    • 2018
  • The present study aims to investigate experimentally and theoretically thermal ablation in soft tissues by using high intensity focused ultrasound (HIFU) to assess tissue damage during HIFU thermotherapy. The HIFU field was calculated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov equation from the frequency-domain perspective. The temperature field was calculated by solving Pennes' bioheat transfer equation, and the thermal dose required to create a thermal lesion was calculated by using the thermal dose formula based on the thermal dose of a 240-min exposure at $43^{\circ}C$. In order to validate the simulation results, we performed thermal ablation experiments in a tissue-mimicking phantom and ex-vivo porcine liver for two different HIFU source conditions by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The small difference between the measured and the predicted lesion sizes suggests that the implementation of the numerical model used here should be modified to iteratively allow for temperature-dependent changes in the physical properties of tissues.

Stress-based topology optimization under buckling constraint using functionally graded materials

  • Minh-Ngoc Nguyen;Dongkyu Lee;Soomi Shin
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.203-223
    • /
    • 2024
  • This study shows functionally graded material structural topology optimization under buckling constraints. The SIMP (Solid Isotropic Material with Penalization) material model is used and a method of moving asymptotes is also employed to update topology design variables. In this study, the quadrilateral element is applied to compute buckling load factors. Instead of artificial density properties, functionally graded materials are newly assigned to distribute optimal topology materials depending on the buckling load factors in a given design domain. Buckling load factor formulations are derived and confirmed by the resistance of functionally graded material properties. However, buckling constraints for functionally graded material topology optimization have not been dealt with in single material. Therefore, this study aims to find the minimum compliance topology optimization and the buckling load factor in designing the structures under buckling constraints and generate the functionally graded material distribution with asymmetric stiffness properties that minimize the compliance. Numerical examples verify the superiority and reliability of the present method.