• 제목/요약/키워드: Simultaneous equations system

검색결과 104건 처리시간 0.024초

한국경제의 총수요와 총공급에서의 베이지안 구조변화 분석 (A Bayesian Analysis of Structural Changes in Aggregate Demand and Supply of Korean Economy)

  • 전덕빈;박대근
    • 대한산업공학회지
    • /
    • 제24권4호
    • /
    • pp.475-483
    • /
    • 1998
  • Structural changes in an economy system bring about serious problems in establishing economic policies. The boom of middle-east export, the oil shock, and the recent dollar crisis in Korean economy are such examples. Hence, it is necessary to identify and estimate those structural changes. This study focuses on an output and price and analyzes structural changes in aggregate demand and supply. The aggregate demand and supply structures are described by conventional dynamic simultaneous equations model, where each structural change is represented by dummy variables and estimated by the proposed Bayesian method. By applying this model to Korean output and price, structural changes in the aggregate demand and supply are analyzed.

  • PDF

비만과 만성질환이 의료비에 미치는 효과에 대한 패널분석 (A Panel Study on the Effect of Obesity and the Chronic Diseases on the Health Care Expenditures)

  • 김상현;사공진
    • 보건행정학회지
    • /
    • 제25권3호
    • /
    • pp.152-161
    • /
    • 2015
  • We analyze the determinants of obesity and the chronic diseases using the Korea Health Panel data. Also we analyze the effect of obesity and the chronic diseases on the health care expenditures. Through this study, to reduce the health care expenditures, we suggest the policy implication that might curb the obesity and the chronic diseases. We estimate the determinants of obesity, the chronic diseases, and the health care expenditures using 2SLS (two stage least squares) estimation method under the simultaneous equations framework. Result says that obesity and chronic diseases significantly have positive effects on the health care expenditures. Also the determinants of the health care expenditures that have positive effects are age, income and health care utilization variables.

주기적으로 slot가 있는 도파관 복사계의 전자계해석 (Field Analysis of Periodically Slotted Waveguide Structures Excited by an Aperiodic Source)

  • Kim, Young-Cho
    • 대한전자공학회논문지
    • /
    • 제23권2호
    • /
    • pp.131-148
    • /
    • 1986
  • A field ploblem of a grounded dielectric slab covered by a conducting plane with periodecally spaced arbitrary number of slots excited by an aperiodis source is analyzed. The problem is formulated in terms of simultaneous integral equations for unknown electric fields at each slot. A sampling technique is introduced to reduce the system equations to a matrix equation equation involving Green's function matrix. The solution obtained in the form of infinite series is transformed, into a more rapidly convergent one in its final stage. Theoretical results agree closesly with the experimental results.

  • PDF

Waviness가 있는 볼베어링으로 지지된 회전계의 안정성 해석 (Stability Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness)

  • 정성원;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.181-189
    • /
    • 2002
  • This research presents an analytical model to investigate the stability due to the ball bearing waviness in a rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have time-varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite determinant of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling elements of a ball bearing generates the time-varying component of the stiffness coefficient, whose frequency is called the frequency of the parametric excitation. It also shows that the instability takes place from the positions in which the ratio of the natural frequency to the frequency of the parametric excitation corresponds to i/2 (i= 1,2,3..).

  • PDF

Derivation of Distributed Generation Impact Factor in a Networked System in Case of Simultaneous Outputs of Multiple Generation Sites

  • Lim, Jung-Uk;Runolfsson, Thordur
    • 조명전기설비학회논문지
    • /
    • 제20권9호
    • /
    • pp.78-83
    • /
    • 2006
  • A new measure, the distributed generation impact factor (DGIF), is used for evaluating the impact of newly introduced distributed generators on a networked distribution or a transmission system. Distribution systems are normally operated in a radial structure. But the introduction of distributed generation needs load flow calculation to analyze the networked system. In the developed framework, the potential share of every generation bus in each line flow of a networked system can be directly evaluated. The developed index does not require the solution of power flow equations to evaluate the effect of the distributed generation. The main advantage of the developed method lies in its capability of considering simultaneous outputs of multiple generation sites.

회전체의 비틀림 고유진동 해석 (Analysis of Torsional Natural Viibration Characteristics of Rotors)

  • 전오성;김정태
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1351-1362
    • /
    • 1995
  • A method to estimate the torsional critical speed for practical rotors has been developed in this study. First, the rotor with a uniform shaft segment is modeled for undamped torsional motion analysis, while satisfying all the boundary conditions. This eventually generates governing equations for the torsional critical speeds of the system. The set of governing equations has the form of a sparse and banded matrix. The elements of banded matrix can be arranged in partitions, which correspond to the specific boundary of the rotor. This permits an automatic generation of the system matrix using a computer. In order to calculate the determinant generated by the simultaneous equations, which leads to the torsional critical speed, a recurring numerical algorithm for a (3*4) sub-matrix has been used. This numerical algorithm practically examines successive (3*4) sub-matrix, one at a time, instead of treating a huge matrix. The output of the program provides the mode shapes with continuous curves. The method has been implemented to three rotors given as examples : a simple rotor, Prohl's rotor, and Macmillan rotor.

홈이 회전하는 빗살무늬 저널 베어링의 안정성 해석 (Stability Analysis of a Herringbone Grooved Journal Bearing with Rotating Grooves)

  • 윤진욱;장건희
    • 한국소음진동공학회논문집
    • /
    • 제13권4호
    • /
    • pp.247-257
    • /
    • 2003
  • This paper presents an analytical method to Investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic Journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill's infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.

홈이 회전하는 빗살무의 저널 베어링의 안정성 해석 (Stability Analysis of a Herringbone Grooved Journal Bearing with Rotating Grooves)

  • 윤진욱;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.166-174
    • /
    • 2002
  • This paper presents an analytical method to Investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill's infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.

  • PDF

Waviness가 있는 볼베어링으로 지지된 회전계의 동특성 해석 (II)-안정성 해석 - (Dynamic Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (I) -Vibration Analysis-)

  • 정성원;장건희
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2647-2655
    • /
    • 2002
  • This research presents an analytical model to investigate the stability due to the ball bearing waviness i n a rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have time -varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite determinant of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling elements of a ball bearing generates the time-varying component of the stiffness coefficient, whose frequency is called the frequency of the parametric excitation. It also shows that the instability takes place from the positions in which the ratio of the natural frequency to the frequency of the parametric excitation corresponds to i/2 (i=1,2,3..).

단일추진제 추진시스템의 과도기유체 해석 (A fluid transient analysis for the propellant flow in a monopropellant propulsion system)

  • 채종원;한조영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.173-181
    • /
    • 2005
  • A fluid transient analysis for the propellant flow in a monopropellant propulsion system is conducted using the method of characteristics (MOC). Algebraic simultaneous equations method and Clamor's rule method utilized to drive the compatible and characteristic equations are reviewed to understand MOC more extensively. The identification of fluid transient phenomena of propulsion system of Koreasat 1 is carried out through parametric studies. Also this work describes the reason that the propulsion system of Koreasat 1 has no orifice to control flow transients or to limit the initial hydrazine flow rate for the first-pulse firing.

  • PDF