• Title/Summary/Keyword: Simulation Annealing

Search Result 180, Processing Time 0.026 seconds

A Study of Dopant Distribution in SiGe Using Ion Implantation and Thermal Annealing (SiGe에 이온 주입과 열처리에 의한 불순물 분포의 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.377-385
    • /
    • 2018
  • For the investigation of dopant profiles in implanted $Si_{1-x}Ge_x$, the implanted B and As profiles are measured using SIMS (secondary ion mass spectrometry). The fundamental ion-solid interactions of implantation in $Si_{1-x}Ge_x$ are discussed and explained using SRIM, UT-marlowe, and T-dyn programs. The annealed simulation profiles are also analyzed and compared with experimental data. In comparison with the SIMS data, the boron simulation results show 8% deviations of $R_p$ and 1.8% deviations of ${\Delta}R_p$ owing to relatively small lattice strain and relaxation on the sample surface. In comparison with the SIMS data, the simulation results show 4.7% deviations of $R_p$ and 8.1% deviations of ${\Delta}R_p$ in the arsenic implanted $Si_{0.2}Ge_{0.8}$ layer and 8.5% deviations of $R_p$ and 38% deviations of ${\Delta}R_p$ in the $Si_{0.5}Ge_{0.5}$ layer. An analytical method for obtaining the dopant profile is proposed and also compared with experimental and simulation data herein. For the high-speed CMOSFET (complementary metal oxide semiconductor field effect transistor) and HBT (heterojunction bipolar transistor), the study of dopant profiles in the $Si_{1-x}Ge_x$ layer becomes more important for accurate device scaling and fabrication technologies.

Ni-assisted Fabrication of GaN Based Surface Nano-textured Light Emitting Diodes for Improved Light Output Power

  • Mustary, Mumta Hena;Ryu, Beo Deul;Han, Min;Yang, Jong Han;Lysak, Volodymyr V.;Hong, Chang-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.454-461
    • /
    • 2015
  • Light enhancement of GaN based light emitting diodes (LEDs) have been investigated by texturing the top p-GaN surface. Nano-textured LEDs have been fabricated using self-assembled Ni nano mask during dry etching process. Experimental results were further compared with simulation data. Three types of LEDs were fabricated: Conventional (planar LED), Surface nano-porous (porous LED) and Surface nano-cluster (cluster LED). Compared to planar LED there were about 100% and 54% enhancement of light output power for porous and cluster LED respectively at an injection current of 20 mA. Moreover, simulation result showed consistency with experimental result. The increased probability of light scattering at the nano-textured GaN-air interface is the major reason for increasing the light extraction efficiency.

Optimization of Job-Shop Schedule Considering Deadlock Avoidance (교착 회피를 고려한 Job-Shop 일정의 최적화)

  • Jeong, Dong-Jun;Lee, Du-Yong;Im, Seong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2131-2142
    • /
    • 2000
  • As recent production facilities are usually operated with unmanned material-handling system, the development of an efficient schedule with deadlock avoidance becomes a critical problem. Related researches on deadlock avoidance usually focus on real-time control of manufacturing system using deadlock avoidance policy. But little off-line optimization of deadlock-free schedule has been reported. This paper presents an optimization method for deadlock-free scheduling for Job-Shop system with no buffer. The deadlock-free schedule is acquired by the procedure that generates candidate lists of waiting operations, and applies a deadlock avoidance policy. To verify the proposed approach, simulation resultsare presented for minimizing makespan in three problem types. According to the simulation results the effect of each deadlock avoidance policy is dependent on the type of problem. When the proposed LOEM (Last Operation Exclusion Method) is employed, computing time for optimization as well as makespan is reduced.

Growth Mechanism of Graphene structure on 3C-SiC(111) Surface: A Molecular Dynamics Simulation

  • Hwang, Yu-Bin;Lee, Eung-Gwan;Choe, Hui-Chae;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.433-433
    • /
    • 2011
  • Since the concept of graphene was established, it has been intensively investigated by researchers. The unique characteristics of graphene have been reported, the graphene attracted a lot of attention for material overcomes the limitations of existing semiconductor materials. Because of these trends, economical fabrication technique is becoming more and more important topic. Especially, the epitaxial growth method by sublimating the silicon atoms on Silicon carbide (SiC) substrate have been reported on the mass production of high quality graphene sheets. Although SiC exists in a variety of polytypes, the 3C-SiC polytypes is the only polytype that grows directly on Si substrate. To practical use of graphene for electronic devices, the technique, forming the graphene on 3C-SiC(111)/Si structure, is much helpful technique. In this paper, we report on the growth of graphene on 3C-SiC(111) surface. To investigate the morphology of formed graphene on the 3C-SiC(111) surface, the radial distribution function (RDF) was calculated using molecular dynamics (MD) simulation. Through the comparison between the kinetic energies and the diffusion energy barrier of surface carbon atoms, we successfully determined that the graphitization strongly depends on temperature. This graphitization occurs above the annealing temperature of 1500K, and is also closely related to the behavior of carbon atoms on SiC surface. By analyzing the results, we found that the diffusion energy barrier is the key parameter of graphene growth on SiC surface.

  • PDF

A Study on Optimal Placement of Underwater Target Position Tracking System considering Marine Environment (해양환경을 고려한 수중기동표적 위치추적체계 최적배치에 관한 연구)

  • Taehyeong Kim;Seongyong Kim;Minsu Han;Kyungjun Song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.400-408
    • /
    • 2023
  • The tracking accuracy of buoy-based LBL(Long Base Line) systems can be significantly influenced by sea environmental conditions. Particularly, the position of buoys that may have drifted due to sea currents. Therefore it is necessary to predict and optimize the drifted-buoy positions in the deploying step. This research introduces a free-drift simulation model using ocean data from the European CMEMS. The simulation model's predictions are validated by comparing them to actual sea buoy drift tracks, showing a substantial match in averaged drift speed and direction. Using this drift model, we optimize the initial buoy layout and compare the tracking performance between the center hexagonal layout and close track layout. Our results verify that the optimized layout achieves lower tracking errors compared to the other two layout.

Computationally Efficient ion-Splitting Method for Monte Carlo ion Implantation Simulation for the Analysis of ULSI CMOS Characteristics (ULSI급 CMOS 소자 특성 분석을 위한 몬테 카를로 이온 주입 공정 시뮬레이션시의 효율적인 가상 이온 발생법)

  • Son, Myeong-Sik;Lee, Jin-Gu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.771-780
    • /
    • 2001
  • It is indispensable to use the process and device simulation tool in order to analyze accurately the electrical characteristics of ULSI CMOS devices, in addition to developing and manufacturing those devices. The 3D Monte Carlo (MC) simulation result is not efficient for large-area application because of the lack of simulation particles. In this paper is reported a new efficient simulation strategy for 3D MC ion implantation into large-area application using the 3D MC code of TRICSI(TRansport Ions into Crystal Silicon). The strategy is related to our newly proposed split-trajectory method and ion-splitting method(ion-shadowing approach) for 3D large-area application in order to increase the simulation ions, not to sacrifice the simulation accuracy for defects and implanted ions. In addition to our proposed methods, we have developed the cell based 3D interpolation algorithm to feed the 3D MC simulation result into the device simulator and not to diverge the solution of continuous diffusion equations for diffusion and RTA(rapid thermal annealing) after ion implantation. We found that our proposed simulation strategy is very computationally efficient. The increased number of simulation ions is about more than 10 times and the increase of simulation time is not twice compared to the split-trajectory method only.

  • PDF

Physical Properties of AuGe Liquid Metal Ion Implanted n-GaAs (AuGe 액체금속 이온이 주입된 n-GaAs의 물성연구)

  • Kang, Tae-Won;Lee, Jeung-Ju;Kim, Song-Gang;Hong, Chi-Yhou;Leem, Jae-Young;Chung, Kwan-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.63-70
    • /
    • 1989
  • The ion beam extracted from the AuGe liquid metal ion source was implanted into GaAs substrate. The surface composition and the structure of ion implanted samples were investigated by AES, RHEED, SEM and EPMA. The depth profiles measured by AES were compared with the results of Monte Carlo simulation based on the two-body collision. As the results of AuGe ion implantation the preferential sputtering of As were revealed by AES and EPMA, and the outdiffusion of Ga and Ge was investigated by 300$^{circ}C$ annealing. The Au and Ge depth profiles measured by AES agreed with the results of Monte Carlo simulation based on the two-body collision.

  • PDF

Proton implantation mechanism involved in the fabrication of SOI wafer by ion-cut process (Ion-cut에 의한 SOI웨이퍼 제조에서의 양성자조사기구)

  • 우형주;최한우;김준곤;지영용
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • The SOI wafer fabrication technique has been developed by using ion-cut process, based on proton implantation and wafer bonding techniques. It has been shown by TRIM simulation that 65 keV proton implantation is required for the standard SOI wafer (200 nm SOI, 400 nm BOX) fabrication. In order to investigate the optimum proton dose and primary annealing condition for wafer splitting, the surface morphologic change has been observed such as blistering and flaking. As a result, effective dose is found to be in the 6∼$9\times10^{16}$ $H^{+}/\textrm{cm}^2$ range, and the annealing at $550^{\circ}C$ for 30 minutes is expected to be optimum for wafer splitting. The depth distribution of implanted hydrogen has been experimentally confirmed by ERD and SIMS measurements. The microstructure evolution in the damaged layer was also studied by X-TEM analysis.

Thermal Deformation of Glass Backplane during Flash Lamp Crystallization Process of Amorphous Silicon (플래시 램프를 이용한 비정질 실리콘 결정화 공정에서의 유리기판 열변형)

  • Kim, Dong-Hyun;Kim, Byung-Kuk;Kim, Hyoung-June;Chung, Ha-Seung;Park, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1025-1032
    • /
    • 2012
  • The flash lamp annealing (FLA) process has been considered highly promising for manufacturing low-temperature polysilicon on large-scale backplanes. Based on a theoretical estimation, this study clarifies the critical mechanisms of glass backplane deformation during the FLA process. A simulation using a commercial FEM code with viscoelastic models shows that the local region, whose temperature is larger than the glass softening point, undergoes permanent structural shrinkage owing to stress relaxation. For larger backplanes (4th Gen), structural shrinkages and gravitational deflection are critical to deformation in the FLA process, resulting in an "M" shape; in smaller backplanes (0th Gen), the latter is negligible, resulting in a "U" shape.

Development of Axial Power Distribution Monitoring System Using Two-Level Encore Detector (상하부 2개의 노외계측기를 이용한 축방향 출력분포 감시계통 개발)

  • Chi, Sung-Goo;Song, Jae-Woong;Ahn, Dwak-Hwan;Kuh, Jung-Eui
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.294-301
    • /
    • 1989
  • The Axial Power Distribution Monitoring System(APDMS) program was developed to calculate a detailed axial power distribution using two-level excore detector, cold leg temperature and control rod position signals. The unnormalized two-level excore detector signals were corrected for the rod shadowing factor determined by control rod position and for the temperature shadowing factor calculated based on cold leg temperature. A shape annealing matrix was then applied to the corrected excore detector response to yield peripheral power. After the core average power was obtained using linear relationship bet-ween core average and peripheral power, the boundary point power correction coefficient was applied to core average power in order to obtain boundary power for both upper and lower core axial boundaries. Then, the axial power distribution was synthesized by spline approximation. In spite of burnup, power level, control rod postion and axial offset changes, the comparisons of axial power distributions between BOXER simulation program and APDMS results showed good agreements within 5% root mean square error for Kori Unit 3 Cycle 4.

  • PDF