Browse > Article

Proton implantation mechanism involved in the fabrication of SOI wafer by ion-cut process  

우형주 (한국지질자원연구원, 입자빔응용팀)
최한우 (한국지질자원연구원, 입자빔응용팀)
김준곤 (한국지질자원연구원, 입자빔응용팀)
지영용 (한국지질자원연구원, 입자빔응용팀)
Publication Information
Journal of the Korean Vacuum Society / v.13, no.1, 2004 , pp. 1-8 More about this Journal
Abstract
The SOI wafer fabrication technique has been developed by using ion-cut process, based on proton implantation and wafer bonding techniques. It has been shown by TRIM simulation that 65 keV proton implantation is required for the standard SOI wafer (200 nm SOI, 400 nm BOX) fabrication. In order to investigate the optimum proton dose and primary annealing condition for wafer splitting, the surface morphologic change has been observed such as blistering and flaking. As a result, effective dose is found to be in the 6∼$9\times10^{16}$ $H^{+}/\textrm{cm}^2$ range, and the annealing at $550^{\circ}C$ for 30 minutes is expected to be optimum for wafer splitting. The depth distribution of implanted hydrogen has been experimentally confirmed by ERD and SIMS measurements. The microstructure evolution in the damaged layer was also studied by X-TEM analysis.
Keywords
SOI; ion-cut; proton implantation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Berthold, B. Jakoby and M.J. Vellekoop, Sensors and Actuators A 68, 410 (1998)
2 C.G. Van de Walle, Phy. Rev. B 40, 4579 (1994)
3 A. Ploessel and G. Krauter, Wafer direct bonding: tailoring adhesion between brittle materials, Materials Science & Engineering, R25, 1 (1999)
4 C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Brnel, A. J. Auberton-Herve, and T. Barge, Mat. Sci. & Eng. B 46, 14 (1997)   DOI   ScienceOn
5 H. Iwata, M. Takagi, Y. Tokuda, and T. Imura, J. Crystal Growth 210, 94 (2000)   DOI   ScienceOn
6 G.D. Arrigo, S. Coffa, and C. Spinella, Sensors and Actuators A 3278, 1 (2002)
7 J. Wang, Q. Xiao, H. Yu, B. Shao, and A. Liu, Microelectronic Eng. 66, 314 (2003)   DOI   ScienceOn
8 S. Romani and J. H. Evans, Nucl. Instr. Meth. B 44, 313 (1990).   DOI   ScienceOn
9 S. S. Iyer and A. J. Auberton-Herve, Silicon Wqfer Bonding Technology for VLSI and MEMS Applications, The Institution of Electrical Engineers, 2002
10 T. W. Simpson, I.V. Mitchell, G. O. Este, and F. R. Shepherd, Nucl. Instr. Meth. B 148, 381 (1999)   DOI   ScienceOn
11 Next generation Semiconductor Wafer, SOl wafer and its manufacturing method invented by Canon, Eltran, http://www.canon.com/technology/production /index.com
12 Q.-Y. Tong and U. Goesele, Semiconductor Wafer Bonding-Science & Technology, (John Wiley & Sons, New York, 1999), pp. 1-15
13 J. Haisma and G.A.C.M. Spierings, Mat. Sci. Eng. R269, 1 (2002)
14 S. Cristoloveanu, Solid State Electronics 45, 1403(2001)   DOI   ScienceOn
15 J. D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, C. P. Christian, and N. R. Parikh, Nuc1. Instr. Meth. B 99, 602 (1995)   DOI   ScienceOn
16 C. H. Yun and N. W. Cheung, J. Microelectro- mechanical Systems 9, 474 (2000)   ScienceOn
17 M. Brnel, Nucl. Instr. Meth. 108, 313 (1996)   DOI   ScienceOn
18 B. Aspar, M. Brnel, H. Moriceau, C. Maleville, T. Poumeyrol, A.M. Papon, A. Claverie, and G. Benassayag, Microelectronic Engineering 36, 233 (1997)   DOI   ScienceOn
19 A. Ploessel and G. Krauter, Solid-State Electronics 44, 775 (2000)   DOI   ScienceOn