DOI QR코드

DOI QR Code

Thermal Deformation of Glass Backplane during Flash Lamp Crystallization Process of Amorphous Silicon

플래시 램프를 이용한 비정질 실리콘 결정화 공정에서의 유리기판 열변형

  • Kim, Dong-Hyun (Research Institute for Science and Technology, Hongik Univ.) ;
  • Kim, Byung-Kuk (Viatron Technologies, Suwon Industrial Complex) ;
  • Kim, Hyoung-June (Viatron Technologies, Suwon Industrial Complex) ;
  • Chung, Ha-Seung (Dept. of Mechanical and System Design Engineering, Hongik Univ.) ;
  • Park, Seung-Ho (Dept. of Mechanical and System Design Engineering, Hongik Univ.)
  • 김동현 (홍익대학교 과학기술연구소) ;
  • 김병국 ((주) 비아트론) ;
  • 김형준 ((주) 비아트론) ;
  • 정하승 (홍익대학교 기계시스템디자인공학과) ;
  • 박승호 (홍익대학교 기계시스템디자인공학과)
  • Received : 2012.06.07
  • Accepted : 2012.07.09
  • Published : 2012.10.01

Abstract

The flash lamp annealing (FLA) process has been considered highly promising for manufacturing low-temperature polysilicon on large-scale backplanes. Based on a theoretical estimation, this study clarifies the critical mechanisms of glass backplane deformation during the FLA process. A simulation using a commercial FEM code with viscoelastic models shows that the local region, whose temperature is larger than the glass softening point, undergoes permanent structural shrinkage owing to stress relaxation. For larger backplanes (4th Gen), structural shrinkages and gravitational deflection are critical to deformation in the FLA process, resulting in an "M" shape; in smaller backplanes (0th Gen), the latter is negligible, resulting in a "U" shape.

플래시 램프 열처리(Flash lamp annealing, FLA) 공정은 저온폴리실리콘의 생산을 위한 기술로써 대면적 기판용 실리콘 결정화 기술로 기대 받고 있는 기술이다. 본 연구에서는 FLA 공정 중 기판에 발생하는 변형의 원인에 대하여 이론적인 해석과 이를 토대로 시뮬레이션을 수행하였다. 상용 FEM 해석프로그램에 고온에서의 유리의 점성에 대한 모델을 적용하여, 고온에서 유리의 구조적인 수축과 응력이완으로 인한 영구변형을 수치적으로 재현하였다. 0 세대 실험시편($2cm{\times}2cm$)의 경우 중력의 영향이 미미하여서, 실험 결과와 일치하는 'U'모양의 변형이 남는 것을 확인하였고, 4 세대 기판($74cm{\times}94cm$)의 경우 중력으로 인하여 'M'모양의 변형이 발생하는 것을 시뮬레이션하였다.

Keywords

References

  1. Matsuda, A., 1983, "Formation Kinetics and Control of Microcrystallite in ${\mu}$c-Si:H from Glow Discharge Plasma," J. Non-Cryst. Solids, Vol. 59-60, pp. 767-774. https://doi.org/10.1016/0022-3093(83)90284-3
  2. Lai, M. Z., Lee, P. S. and Agarwal, A., 2006. "Thermal Effects on LPCVD Amorphous Silicon," Thin Solid Films, Vol. 504, pp. 145-147. https://doi.org/10.1016/j.tsf.2005.09.065
  3. Im, J. S., Kim, H. J. and Thompson, M. O., 1993, "Phase Transformation Mechanisms Involved in Excimer Laser Crystallization of Amorphous Silicon Films," Appl. Phys. Lett., Vol. 63, pp. 1969-1971. https://doi.org/10.1063/1.110617
  4. Yoon, S. Y., Kim, K. H., Kim, C. O., Oh, J. Y. and Jang, J., 1997, "Low Temperature Metal Induced Crystallization of Amorphous Silicon Using a Ni Solution," J. App. Phys., Vol.82, pp. 5865-5867. https://doi.org/10.1063/1.366455
  5. Widenborg, P. I. and Aberle, A. G., 2002, "Surface Morphology of Poly-Si Films Made by Aluminum- Induced Crystallisation on Glass Substrates," J. Cryst. Growth, Vol. 242, pp. 270-282 https://doi.org/10.1016/S0022-0248(02)01388-X
  6. Lee, W. K., Han, S. M., Choi, J. and Han, M. K., 2008, "The Characteristics of Solid Phase Crystallized (SPC) Polycrystalline Silicon Thin Film Transistors Employing Amorphous Silicon Process," J. Non-Cryst. Solids, Vol. 354, pp. 2509-2512. https://doi.org/10.1016/j.jnoncrysol.2007.09.083
  7. Andoh, N., Sameshima, T. and Kitahara, K., 2005, "Crystallization of Silicon Films by Rapid Joule Heating Method," Thin Solid Films, Vol. 487, pp. 118-121. https://doi.org/10.1016/j.tsf.2005.01.084
  8. Hong, W. E., Chung, J. K., Kim, D. H., Park, S. H. and Ro, J. S., 2010, "Supergrains Produced by Lateral Growth Using Joule-Heating Induced Crystallization Without Artificial Control," Appl. Phys. Lett., Vol. 96, p. 052105. https://doi.org/10.1063/1.3253704
  9. Kim, D. H., Hong, W. E., Ro, J. S., Lee, S. H., Lee, C. H. and Park, S., 2011, "In-Situ Observation of Phase Transformation in Amorphous Silicon During Joule- Heating Induced Crystallization Process," Thin Solid Films, Vol. 519, pp. 5516-5522. https://doi.org/10.1016/j.tsf.2011.03.053
  10. Kim, D. H., Hong, W. E., Ro, J. S., Lee, S. H., and Park, S. H., 2011, "Thermal Deformation of Glass Backplanes During Joule-Heating Induced Crystallization Process," Vacuum, Vol. 85, pp. 847-852. https://doi.org/10.1016/j.vacuum.2010.12.006
  11. Smith, M. P., McMahon, R. A., Voelskow, M., Panknin, D. and Skorupa, W., 2005, "Modeling of Flash-Lamp-Induced Crystallization of Amorphous Silicon Thin Films on Glass, J. Cryst. Growth., Vol. 285, pp. 249-260. https://doi.org/10.1016/j.jcrysgro.2005.08.033
  12. Kim, D. H., Kim, B. K., Kim, H. J. and Park, S. H., 2012, "Crystallization of Amorphous Silicon Thin- Film on Glass Substrate Preheated at 650 $^{\circ}C$ Using Xe Arc Flash of 400 ${\mu}s$," Thin Solid Films, Vol. 520, pp.6581-6588 https://doi.org/10.1016/j.tsf.2012.07.006
  13. Pedrotti F. L. and Pedrotti, L. S. 1993, "Introduction To Optics 2nd edition," Prentice Hall, New Jersey, USA.
  14. The REMBAR Company. Inc, http://www.rembar.com/default.htm Dobbs Ferry.
  15. Samsung Corning Precision Glass Inc, www.samsungscp.co.kr.
  16. Sameshima, T., Kaneko, Y. and Andoh, N., 2002, "Rapid Joule Heating of Metal Films Used To Crystallize Silicon Films," App. Phys. Latt., Vol. 74, pp. 719-723.
  17. Palik, E. D., 1998, "Handbook of Optical Constants of Solids," Academic Press, San Diego.
  18. Bower, D. I., 2002, "An Introduction to Polymer Physics," Cambridge University Press, Cambridge, UK.
  19. ABAQUS 6.8, www.simulia.com.