Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.6.377

A Study of Dopant Distribution in SiGe Using Ion Implantation and Thermal Annealing  

Jung, Won-Chae (Department of Electronic Engineering, Kyonggi University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.6, 2018 , pp. 377-385 More about this Journal
Abstract
For the investigation of dopant profiles in implanted $Si_{1-x}Ge_x$, the implanted B and As profiles are measured using SIMS (secondary ion mass spectrometry). The fundamental ion-solid interactions of implantation in $Si_{1-x}Ge_x$ are discussed and explained using SRIM, UT-marlowe, and T-dyn programs. The annealed simulation profiles are also analyzed and compared with experimental data. In comparison with the SIMS data, the boron simulation results show 8% deviations of $R_p$ and 1.8% deviations of ${\Delta}R_p$ owing to relatively small lattice strain and relaxation on the sample surface. In comparison with the SIMS data, the simulation results show 4.7% deviations of $R_p$ and 8.1% deviations of ${\Delta}R_p$ in the arsenic implanted $Si_{0.2}Ge_{0.8}$ layer and 8.5% deviations of $R_p$ and 38% deviations of ${\Delta}R_p$ in the $Si_{0.5}Ge_{0.5}$ layer. An analytical method for obtaining the dopant profile is proposed and also compared with experimental and simulation data herein. For the high-speed CMOSFET (complementary metal oxide semiconductor field effect transistor) and HBT (heterojunction bipolar transistor), the study of dopant profiles in the $Si_{1-x}Ge_x$ layer becomes more important for accurate device scaling and fabrication technologies.
Keywords
Ion implantation; Sputtering; SiGe; SIMS; Diffusion; Computer simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Moller and W. Eckstein, Nucl. Instrum. Methods B, 2, 814 (1984). [DOI: https://doi.org/10.1016/0168-583X(84)90321-5]   DOI
2 J. P. Biersack, S. Berg, and C. Nender, Nucl. Instrum. Methods B, 59, 21 (1991). [DOI: https://doi.org/10.1016/0168-583x(91)95167-c]
3 S. Jayanarayanan, F. Prins, X. Chen, and S. Banerjee, Mater. Res. Soc. Symp. Proc., 686, A2.8 (2002). [DOI: https://doi.org/10.1557/PROC-686-A2.8]   DOI
4 W. P. Maszara, Mater. Res. Soc. Symp. Proc., 686, A2.5 (2002). [DOI: https://doi.org/10.1557/PROC-686-A2.5]
5 H. Ryssel, J. Lorenz, and K. Hoffmann, Appl. Phys., A41, 201 (1986). [DOI: https://doi.org/10.1007/bf00616841]
6 S. H. Yang, S. J. Morris, D. L. Lim, A. F. Tasch, R. B. Simonton, D. Kamenitsa, C. Magee, and G. Lux, J. Electron. Mater., 23, 801 (1994). [DOI: https://doi.org/10.1007/bf02651376]   DOI
7 K. M. Klein, C. Park, and A. F. Tasch, Nucl. Instrum. Methods B, 59, 60 (1991). [https://doi.org/10.1016/0168-583x(91)95175-d]
8 L. A. Edelman, M. S. Phen, K. S. Jones, R. G. Elliman, and L. M. Rubin, Appl. Phys. Lett., 92, 172108 (2008). [DOI: https://doi.org/10.1063/1.2919085]   DOI
9 P. Kuo, J. L. Hoyt, J. F. Gibbons, J. E. Turner, and D. Lefforge, Appl. Phys. Lett., 66, 580 (1995). [DOI: https://doi.org/10.1063/1.114019]   DOI
10 R. Wittmann, S. Uppal, A. Hossinger, J. Cervenka, and S. Selberherr, ECS Trans., 3, 667 (2006). [DOI: https://doi.org/10.1149/1.2355862]
11 C. C. Wang, Y. M. Sheu, S. Liu, R. Duffy, A. Heringa, N.E.B. Cowern, and P. B. Griffin, Mater. Sci. Eng., B, 124, 39 (2005). [DOI: https://doi.org/10.1016/j.mseb.2005.08.127]
12 J. B. Roldan, F. Gamiz, J. A. Lopez-Villanueva, and J. E. Carceller, Semicond. Sci. Technol., 12, 1603 (1997). [DOI: https://doi.org/10.1088/0268-1242/12/12/010]   DOI
13 J. P. Dismukes, L. Ekstrom, E. F. Steigmeier, I. Kudman, and D. S. Beers, J. Appl. Phys., 35, 2899 (1964). [DOI: https://doi.org/10.1063/1.1713126]   DOI
14 H. Morkoc, B. Sverdlov, and G. B. Gao, Proc. IEEE, 81, 493(1993). [DOI: https://doi.org/10.1109/5.219338]   DOI
15 J. D. Cressler, E. F. Crabbe, J. H. Comfort, J.Y.C. Sun, and J.M.C. Stork, IEEE Electron Device Lett., 15, 472 (1994). [DOI: https://doi.org/10.1109/55.334671]   DOI
16 L. D. Lanzerotti, A. S. Amour, C. W. Liu, J. C. Sturm, J. K. Watanabe, and D. Theodore, IEEE Electron Device Lett., 17, 334 (1996). [DOI: https://doi.org/10.1109/55.506359]   DOI
17 K. Washio, E. Ohue, K. Oda, M. Tanabe, H. Shimamoto, and T. Onai, Proc. International Electron Devices Meeting. IEDM Technical Digest (IEEE, Washington, USA, 1997). p. 795.
18 A. G. O'Neill and D. A. Antoniadis, IEEE Trans. Electron Devices, 43, 911 (1996). [DOI: https://doi.org/10.1109/16.502123]   DOI
19 Z. Shi, X. Chen, D. Onsongo, E. J. Quinones, and S. K. Banerjee, Solid-State Electron., 44, 1223 (2000). [DOI: https://doi.org/10.1016/S0038-1101(00)00031-9]   DOI
20 D. L. Harame and B. S. Meyerson, IEEE Trans. Electron Devices, 48, 2555 (2001). [DOI: https://doi.org/10.1109/16.960383]   DOI
21 J. D. Cressler, SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices (FL. CRC Press, New York, 2008) p. 89.
22 J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985) p. 52.
23 W. Moller, W. Eckstein, and J. P. Biersack, Comput. Phys. Commun., 51, 355 (1998). [DOI: https://doi.org/10.1016/0010-4655(88)90148-8]