• Title/Summary/Keyword: Simple genetic algorithm(SGA)

Search Result 29, Processing Time 0.02 seconds

Performance Evaluation and Parametric Study of MGA in the Solution of Mathematical Optimization Problems (수학적 최적화 문제를 이용한 MGA의 성능평가 및 매개변수 연구)

  • Cho, Hyun-Man;Lee, Hyun-Jin;Ryu, Yeon-Sun;Kim, Jeong-Tae;Na, Won-Bae;Lim, Dong-Joo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.416-421
    • /
    • 2008
  • A Metropolis genetic algorithm (MGA) is a newly-developed hybrid algorithm combining simple genetic algorithm (SGA) and simulated annealing (SA). In the algorithm, favorable features of Metropolis criterion of SA are incorporated in the reproduction operations of SGA. This way, MGA alleviates the disadvantages of finding imprecise solution in SGA and time-consuming computation in SA. It has been successfully applied and the efficiency has been verified for the practical structural design optimization. However, applicability of MGA for the wider range of problems should be rigorously proved through the solution of mathematical optimization problems. Thus, performances of MGA for the typical mathematical problems are investigated and compared with those of conventional algorithms such as SGA, micro genetic algorithm (${\mu}GA$), and SA. And, for better application of MGA, the effects of acceptance level are also presented. From numerical Study, it is again verified that MGA is more efficient and robust than SA, SGA and ${\mu}GA$ in the solution of mathematical optimization problems having various features.

  • PDF

Co-Evolutionary Algorithm for the Intelligent System

  • Sim, Kwee-Bo;Jun, Hyo-Byung
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1013-1016
    • /
    • 1999
  • Simple Genetic Algorithm(SGA) proposed by J. H. Holland is a population-based optimization method based on the principle of the Darwinian natural selection. The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. Although GA does well in many applications as an optimization method, still it does not guarantee the convergence to a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve. In this paper we propose an extended schema theorem associated with a schema co-evolutionary algorithm(SCEA), which explains why the co-evolutionary algorithm works better than SGA. The experimental results show that the SCEA works well in optimization problems including deceptive functions.

  • PDF

Development and Application of Metropolis Genetic Algorithm for the Structural Design Optimization (구조물의 설계 최적화를 위한 메트로폴리스 유전알고리즘의 개발 및 적용)

  • 박균빈;류연선;김정태;조현만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.115-122
    • /
    • 2003
  • A Metropolis genetic algorithm(MGA) is developed and applied for the structural design optimization. In MGA favorable features of Metropolis algorithm in simulated annealing(SA) are incorporated in simple genetic algorithm(SGA), so that the MGA alleviates the disadvantage of finding imprecise solution in SGA and time-consuming computation in SA. Performances of MGA are compared with those of conventional algorithms such as Holland's SGA, Krishnakumar's micro genetic algorithm(μGA), and Kirkpatrick's SA. Typical numerical examples are used to evaluate the favorable features and applicability of MGA From the theoretical evaluation and numerical experience, it is concluded that the proposed MGA is a reliable and efficient tool for structural design optimization.

  • PDF

Micro Genetic Algorithms in Structural Optimization and Their Applications (마이크로 유전알고리즘을 이용한 구조최적설계 및 응용에 관한 연구)

  • 김종헌;이종수;이형주;구본홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.225-232
    • /
    • 2002
  • Simple genetic algorithm(SGA) has been used to optimize a lot of structural optimization problems because it can optimize non-linear problems and obtain the global solution. But, because of large evolving populations during many generations, it takes a long time to calculate fitness. Therefore this paper applied micro-genetic algorithm(μ -GA) to structural optimization and compared results of μ -GA with results of SGA. Additionally, the Paper applied μ -GA to gate optimization problem for injection molds by using simulation program CAPA.

  • PDF

Development and Efficiency Evaluation of Metropolis GA for the Structural Optimization (구조 최적화를 위한 Metropolis 유전자 알고리즘을 개발과 호율성 평가)

  • Park Kyun-Bin;Kim Jeong-Tae;Na Won-Bae;Ryu Yeon-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.27-37
    • /
    • 2006
  • A Metropolis genetic algorithm (MGA) is developed and applied for the structural design optimization. In MGA, favorable features of Metropolis criterion of simulated annealing (SA) are incorporated in the reproduction operations of simple genetic algorithm (SGA). This way, the MGA maintains the wide varieties of individuals and preserves the potential genetic information of early generations. Consequently, the proposed MGA alleviates the disadvantages of premature convergence to a local optimum in SGA and time consuming computation for the precise global optimum in SA. Performances and applicability of MGA are compared with those of conventional algorithms such as Holland's SGA, Krishnakumar's micro GA, and Kirkpatrick's SA. Typical numerical examples are used to evaluate the computational performances, the favorable features and applicability of MGA. The effects of population sizes and maximum generations are also evaluated for the performance reliability and robustness of MGA. From the theoretical evaluation and numerical experience, it is concluded that the proposed MGA Is a reliable and efficient tool for structural design optimization.

Machining Route Selection and Determination of Input Quantity on Multi-Stage Flexible Flow Systems (다단계 작업장에서의 가공경로 선정과 투입량 결정)

  • 이규용;서준용;문치웅
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.1
    • /
    • pp.64-73
    • /
    • 2004
  • This paper addresses a problem of machining determination of input quantity in a multi-stage flexible flow system with non-identical parallel machines considers a subcontracting, machining restraint, and machine yield. We develop a nonlinear programing with the objective of minimizing the sum of in-house processing cost and subcontracting cost. To solve this model, we introduce a single-processor parallel genetic algorithm(SPGA) to improve a weak point for the declined robustness of simple algorithm(SGA). The efficiency of the SPGA is examined in comparison with the SGA for the same problem. In of examination the SPGA is to provide the excellent solution than the solution of the SGA.

Co-Evolutionary Algorithm and Extended Schema Theorem

  • Sim, Kwee-Bo;Jun, Hyo-Byung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.95-110
    • /
    • 1998
  • Evolutionary Algorithms (EAs) are population-based optimization methods based on the principle of Darwinian natural selection. The representative methodology in EAs is genetic algorithm (GA) proposed by J. H. Holland, and the theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. In the meaning of these foundational concepts, simple genetic algorithm (SGA) allocate more trials to the schemata whose average fitness remains above average. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve in contrast with traditional single population evolutionary algorithm. In this paper we show why the co-evolutionary algorithm works better than SGA in terms of an extended schema theorem. And predator-prey co-evolution and symbiotic co-evolution, typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with co-evolution is explained. And the experimental results show a co-evolutionary algorithm works well in optimization problems even though in deceptive functions.

  • PDF

Schema Analysis on Co-Evolutionary Algorithm (공진화에 있어서 스키마 해석)

  • Byung, Jun-Hyo;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.77-80
    • /
    • 1998
  • The theoretical foundations of simple genetic algorithm(SGA) are the Schema Theorem and the Building Block Hypothesis. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and cooperate each other. In this paper we show why the co-evolutionary algorithm works better than SGA in terms of an extended schema theorem. Also the experimental results show a co-evolutionary algorithm works well in optimization problems.

  • PDF

Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (II): Application of Preference Ordering (다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(II): 선호적 순서화의 적용)

  • Koo, Bo-Young;Kim, Tae-Soon;Jung, Il-Won;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.687-696
    • /
    • 2007
  • Preference ordering approach is applied to optimize the parameters of Tank model using multi-objective genetic algorithm (MOGA). As more than three multi-objective functions are used in MOGA, too many non-dominated optimal solutions would be obtained thus the stakeholder hardly find the best optimal solution. In order to overcome this shortcomings of MOGA, preference ordering method is employed. The number of multi-objective functions in this study is 4 and a single Pareto-optimal solution, which is 2nd order efficiency and 3 degrees preference ordering, is chosen as the most preferred optimal solution. The comparison results among those from Powell method and SGA (simple genetic algorithm), which are single-objective function optimization, and NSGA-II, multi-objective optimization, show that the result from NSGA-II could be reasonalby accepted since the performance of NSGA-II is not deteriorated even though it is applied to the verification period which is totally different from the calibration period for parameter estimation.

Hybrid Genetic Algorithm for Classifier Ensemble Selection (분류기 앙상블 선택을 위한 혼합 유전 알고리즘)

  • Kim, Young-Won;Oh, Il-Seok
    • The KIPS Transactions:PartB
    • /
    • v.14B no.5
    • /
    • pp.369-376
    • /
    • 2007
  • This paper proposes a hybrid genetic algorithm(HGA) for the classifier ensemble selection. HGA is added a local search operation for increasing the fine-turning of local area. This paper apply hybrid and simple genetic algorithms(SGA) to the classifier ensemble selection problem in order to show the superiority of HGA. And this paper propose two methods(SSO: Sequential Search Operations, CSO: Combinational Search Operations) of local search operation of hybrid genetic algorithm. Experimental results show that the HGA has better searching capability than SGA. The experiments show that the CSO considering the correlation among classifiers is better than the SSO.