VN EE ABBEF TS S FIHEABMAE BXHE B2% H1% 9906

Co-Evolutionary Algorithm for the Intelligent System

Kwee-Bo Sim and Hyo-Byung Jun

Robotics and Intelligent Information System Laboratory
School of Electrical and Electronic Engineering, Chung-Ang Univetsity
221, Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
Tel:+82-02-820-5319, Fax:+82-02-817-0553, E-mail:kbsim@cau.ac.kr
URL:http://rics.cie.cau.ac kr

Abstract

Simple Genetic Algorithm(SGA) proposed by J. H.
Holland is a population-based optimization method
based on the principle of the Darwinian natural
selection. The theoretical foundations of GA are the
Schema Theorem and the Building Block Hypothesis.
Although GA does well in many applications as an
optimization method, still it does not guarantee the
convergence to a global optimum in GA-hard
problems and deceptive problems. Therefore as an
alternative scheme, there is & growing interest in a
co-evolutionary system, where two populations
constantly interact and co-evolve. In this paper we
propose an extended schema theorem associated with
a schema co-evolutionary algorithm(SCEA), which
explains why the co-evolutionary algorithm works
better than SGA. The experimental results show that
the SCEA works well in optimization problems
including deceptive functions.

Keywords : Simple genetic algorithm(SGA), schema
co-evolution algorithm(SCEA), schema theorem

1. Introduction

The evolutionary algorithms(EAs) were developed
in 1960s through 1990s as a result of modeling the
natural evolution. Typically genetic algorithm(GA)
[13-[3], genetic programming(GP)[4],[5], evolutionary
strategies(ES)[6], and evolutionary programming
(EP)[7] belong to the categories of EAs, and these
have been successfully applied to many different
applications according to the solution representation
and genetic operators. The simple genetic algorithm
was proposed by Holland[3] as a computational
model of living system's evolution process and a
population-based optimization method. Although SGA
can provide many opportunities for obtaining a

global optimal solution, the performance of a system
is more or less limited depending on the fitness
function given by a system designer. It is said,
therefore, that SGA works on static - fitness
landscapes[5].

However natural evolution works on dynamic
fitness landscapes that change over evolutionary time
as a result of co-evolution. Also co-evolution
between different species or different organs results
in the current state of complex natural systems. In
this point, there is a growing interest in
co-evolutionary systems, where two populations
constantly interact and co-evolve in contrast with
traditional single population evolutionary algorithms.
This co-evolutionary method is believed more similar
to natural evolution than other evolutionary
algorithms. Generally co-evolutionary algorithms can
be classified into two categories, which are
predator-prey co-evolution{8],[9] and symbiotic
co-evolution[10]. Also a new fitness measure in
co-evolution has been discussed in terms of "Red
Queen effect"{11].

In this paper, we derive an extended schema
theorem associated with a schema co-evolutionary
algorithm(SCEA), where the fitness of a population
changes according to the evolutionary process of the
other population. Also we presents how a symbiotic
co-evolutionary algorithm works including fitness
measure. As a result of co-evolution the optimal
solution can be find more reliably in a short time
with a small population than SGA. We show why a
co-evolutionary algorithm works better than SGA and
compare them in terms of useful schemata.

In the next section, we explain the schema
co-evolutionary algorithm and derive an extended
schema theorem. Then we demonstrate that the
co-evolutionary algorithm with the extended schema
theorem works better than SGA in solving a
deceptive and a false-peaks functions. Finally the
paper is closed with conclusions including some
discussions about future research.

- 1013 -

VY ¥ E ABREFIEE EFHAERLE

W E B n2AE £ 1K 996

2. SCEA and extended schema theorem

2.1 Process of SCEA

Like the other co-evolutionary algorithms, SCEA
has two different, still cooperatively working,
populations called as a host-population and a
parasite-population, respectively. The first one is
made up of the candidates of solution and works the
same with conventional genetic algorithm. The other
one, a parasite-population, is a set of schemata,
which is to find useful schemata called "Building
Block"[1],[2]. Fig. 1 and 2 show the two cases of
the process of parasitizing in the schema
co-gvolutionary algorithm.

Case 1: By exchanging a string x, for %,

Ty
still one of the strings parasitized by a schema y,
the genetic information acquired by parasitizing is
delivered to the host-population.

Case 2: By replacing strings with improved ones
of the n parasitized strings, the genetic information
acquired by parasitizing is delivered to the
host-population.

which is a string having maximum value of

Host-pop. M Sub-pop. Parasite-pop. Host-pop.
| —— —
= EEmEndy
: random N
= =
: =) :
: 5 ;
[1 ” LN AN
== =
}NE == M
N

Fig. 1 Process of parasitizing (Case 1: Replace a
string with the best one of the # parasitized
strings). N is the population size of the
host-population, M is that of the parasite-population,
and 7 is the size of the each M sub-populations.

Host-pop M Sub-pop Parasite-pop Host-pop
SRS
T AN EE =
=il
g :
: &
=
' T 4;7 \& SN
bin M 1
N N

Fig. 2 Parasitizing process(Case 2: Replace strings
with improved ones of the # parasitized strings).

As above-mentioned, the parasite-population
searches useful schemata and delivers the genetic
information to the host-population by parasitizing
process. We explain this parasitizing process by
means of fimess measure of the parasite-population
and the alteration of a string in the host-population

according to the fitness measure. The fimess of a
schema in the parasite-population depends on #
strings sampled in the host-population. In the context
of a computational model of co-evolution, the
parasitizing means that the characters of a string are
exchanged with the fixed characters of a schema.
The other positions of the string, i.e, the same
positions of don't-care symbol in the schema, hold
their own values. The process of schema
co-evolutionary algorithm, in brief, is that a useful
schema found by the parasite-population is delivered
to the host-population according to the fitness
proportionate, and the evolutionary direction of the
parasite-population is determined by the host-
population.

The fitness F, of a string y in the parasite-
population is determined as follows:

Step 1. Determine a set of strings of the
host-population to be parasitized. Namely select
randomly # strings in the host-population, which are
parasitized by a schema y.

Step 2. Let the sampled strings as x,,--,x,, and
the parasitized strings as Xy, v, Xy A
parasitized string is a sampled string after parasitized
by a schema y.

Step 3. In order to determine the fitness of a
string y in the parasite-population, we set a fitness
function of one time parasitizing as improvement of
the fitness.

fo(B=max(0,A %3 B —Ax;, B (=1, n) ()
Rx;, B)is the fitness of a string x; at
generation %, and A x,, k) is the fitness of a

where

string x,, which is parasitized by a schema y.
Step 4. Then the finess F, of a schema y in
the parasite-population is

Fo= 27 @

As described in equation (2), the fitness of a
schema in the parasite-population is depending on
the parasitized strings in the host-population. In the
next sub-section, we derive an extended schema
theorem associated with these schema co-evolutionary
algorithms.

2.2 Extended schema theorem

SCEA is based on the Schema Theorem and the
Building Block Hypothesis[1],[2]. First we discuss
the original theoretical foundations of the genetic
algorithm. Simple genetic algorithm uses a population
of genotypes composed of fixed-length binary strings
called chromosome. SGA evaluates a population of
genotypes with respect to a particular environment.
The environment includes a fitness function that rates

- 1014 -

Co-Evolutionary Algorithm for the Intelligent System

the genotype's viability. Genotypes reproduce
proportionally to their relative fitness using a variety
of genetic operators. One operator, termed crossover,
uses the recombination of two parents to construct
novel genotypes. The mutation operator creates new
genotypes from a single parent with a probabilistic
alteration.

The theoretical foundations of genetic algorithms
rely on a binary string representation of solutions,
and a notion of a schema. A schema is a subset of
the search space, which match it on all positions
other than don't care symbol(*). There are two
important schema properties, order and defining
length. The number of 0 and 1 positions, i.e., fixed
positions is called the order of a schema H{denoted
by o(H)). And the defining length of a schema H
is the distance between the first and the last fixed
string positions(denoted by &(H)). For example, the
order of ***Q0**1** is 3, and its defining length is
4. An instance of a schema H is a bit string which
has exactly the same bit values in the same positions
that are fixed bits in H. For example, 1000, 1010,
1100, and 1110 are instances of a schema 1**0.

Another property of a schema is its fitness at
generation k, denoted by AH, k). It is defined as
the average fitness of all strings in the population
matched by that schema H. Therefore, the combined
effect of selection, crossover, and mutation on the
expected number of a schema is formulated by:

m(H, k+1) z-fi}’(—’;fl - m(H.E)

=0 EEs - p- o]
is the number of instances of a
F(k) is the average
fitness of all individuals in the population, [is the
number of bits in a string, p, is the crossover rate,
and p,, probability. The above
equation is known as the Schema Theorem [1]-[3]
and means that the short, low-order, and
above-average schema, called as the Building Blocks,
would receive an exponentially increasing number of
strings in the next generations. If there does not
exist a solution in the Building Blocks, however,
simple genetic algorithm might fail to find that
solution. The deceptive function is most well known
as a problem violating above theorem. T. Kuo and
S.Y. Hwang[13] showed that disruptive selection
works better than directional selection on the
deceptive functions

Now we derive an extended schema theorem
associated with a SCEA, and show that it covers the
deceptive functions. If a string vy in the
parasite-population represents a schema H, it is clear
that the above parasitizing process can be

(3)

where m(H, k)

schema H at generation £k,

is the mutation

interpreted, in the context of useful schemata, as a
process of increasing the number of instances of a
schema H in the host-population. If we recall the
original schema theorem, the number of instances of
a schema H at the generation k is changed by the
amount of newly generated instances of that schema.
When the co-evolution is considered, the number of
instances m'(H,%k) of a schema H in the host-
population is formulated by

m' (H, k)= m(H, k) + m(H, k))
where m(H, k) is the original number of instances

of a schema H in the host-population, and m(H, k)
is the increased number of instances by the
parasitizing process. According to the each case of
the parasitizing process, it can be stated as follows:

Case 1:
m(H, B = yZ;H/l(Fy(k»O)

= S5 7w > 0) ®)

= ?;/‘(,: max[0, A %y, B —fx;] > o)
where A(A)=1 if a proposition A is true; =0
otherwise. In this case, a string x; is replaced with

the one of the x parasitized strings having best
improved fitness.

Case 2:
7 CH.) =% yg;ﬁg‘{sgn[R £y, B — fr D] +116)

where sgn(u) is a sign function that equals +1 for
positive z and -1 for negative 2. Note that since
we focus on the newly generated instances after
parasitizing the case that x; is identified with %,
is excluded form the equation (6). This equation
means that since the string x; is exchanged for

%z in the cese that the degree of improvement in

the fitness is above 0, the instances of a schema H
in the host-population are increased.

Also we can formulate the fitness of a schema
H associated with SCEA from its definition. Let us
denote by f'(H, k) the fitness of a schema H
after parasitized at the generation k. Then

5 B+ A Eu By
f(H B = m(H, &)+ m(H, k)

O]

where I, is a set of instances of a schema H at
the generation k and 7 is a index set of increased

instances of a schema H after parasitized.
Combining the above equations, the schema theorem
can be rewritten by

- 1015 -

199 % F X BET TR FZEAEHAE

BoC O 2248 1B 996

, F(HE
m(H k+1) 2m'(H, k) 0 8

~[1—z>c- ﬁ,_—H%—pm- o(H)].

Since the fitness of a schema H is defined as
the average fitness of all strings in the population
matched by that schema H, the fitness f '(H, k) of
a schema H after parasitized can be approximated
by f'(H,H=fH,D. Especially, if the number of
strings in the host-population Ny»n, where #» is
the number of strings to be parasitized, the above
approximation makes sense for the large number of
generation sequences[6].

Consequently we obtain an extended schema
theorem associated with host-parasite co-evolution
that is

- H
mHA+D) 2 (nCH B+ i, B - LR
(1t B, o).

Compared with the original Schema Theorem in
equation(3), the above equation means that the short,
low-order, and above-average schema H would
receive an exponentially increasing number of strings
in the next generation with higher order than SGA.
Additionally the parasitizing process gives more
reliable results in finding an optimal solution.
Because the parasite-population explores the schema
space, a global optimum could be found more
reliably in shorter time than SGA. When the schema
containing a solution does not exist in the
population, SGA may fail to find global optima. In
the other hand, because the useful schema can be
found by the parasite-population, co-evolution gives
much more opportunities to converge to global
optima. We can easily compare the performance of
SCEA with that of SGA in solving a false-peaks
problem and a deceptive function.

3. Conclusions

In this paper we derived an extended schema
theorem associated with schema co-evolutionary
algorithm and compared the Holland's schema
theorem. Even though the original Schema Theorem
and the Building Block Hypothesis give theoretical
foundations to SGA, some problems, such as
deceptive functions, are hard to be solved by SGA.
Co-evolutionary algorithm where two populations
constantly interact and co-evolve in contrast with
traditional single population evolutionary algorithms,
however, solved those problems more reliably. Also
it gives much more chances to find global optima
than SGA because the parasite-population searches
the schema space.

In this paper our study is restricted on the

schema co-evolutionary algorithm, therefore the other
co-evolutionary algorithms including predator-prey
co-evolution should be studied in terms of theoretical
foundations in the future.

Acknowledgments
This research was supported by Braintec 21 from

Ministry of Science and Technology of Korea
(98-J04-01-01-A-07).

References

[11Z. Michalewicz,
Structures=Evolution
Springer-Verlag, 1995.

[2] Melanie Mitchell, An Introduction to Genetic
Algorithm, A Bradford Book, The MIT Press,
1996.

[3] John. H. Holland, Adaptation in Natural and
Artificial Systems : An Introductory analysis with
Applications to Biology, Control, and Artificial
Intelligence, A Bradford Book, The MIT Press,
1975.

[4] John, R. Koza, Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, A Bradford Book, The MIT Press, 1993.

[5] John, R. Koza, Genetic Evolution and
Co-Evolution of Computer Programs, Artificial
Life II, Addison-Wesley, 1991.

[6] Hans-Paul Schwefel, Evolution and Optimum
Seeking, A Wiley-Interscience Publication, John
Wiley & Sons, Inc., 1995.

[7]1 David E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning,
Addison-Wesley, 1989.

[8] Seth G. Bullock, “Co-Evolutionary Design
Implications for Evolutionary Robotics,” The 3rd
European Conference on Artificial Life, 1995.

[9] W. Daniel Hillis, "Co-Evolving Parasites Improve
Simulated Evolution as an Optimization
Procedure,” Artificial Life I, Vol. X,
pp.313-324, 1991.

[10] Jan Paredis, "Co-evolutionary Computation,"
Artificial Life, Vol. 2, No. 4, pp. 353-375, 1995.

[11] D. Cliff, G. F. Miller, “Tracking The Red
Queen: Measurements of adaptive progress in
co-evolution,” COGS Technical Report CSRP363,
Univ. of Sussex, 1995.

(121 D.W. Lee, H.B. Jun, and K. B. Sim, °“A
Co-Evolutionary Approach for Leamning and
Structure Search of Neural Networks,” Proc. of
KFIS Fall Conference 97, Vol. 7, No. 2, pp.
111-114, 1997.

[13] T. Kuo and S. Y. Hwang, "A Genetic
Algorithm with Disruptive Selection,” [EEE
Trans. on Systems, Man, and Cybernetics, Vol.
26, No. 2, pp.299-307, 1996.

Genetic
Programs,

Algorithms+Data
Third Edition,

- 1016 -

