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ABSTRACT
The theoretical foundations of simple genetic algorithm(SGA) are the Schema Theorem and

the Building Block Hypothesis. Although SGA does well

in many applications as an

optimization method, still it does not guarantee the convergence of a global optimum in
GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a
growing interest in a co-evolutionary system, where two populations constantly interact and
cooperate each other. In this paper we show why the co-evolutionary algorithm works better
than SGA in terms of an extended schema theorem. Also the experimental results show a
co-evolutionary algorithm works well in optimization problems.

1. Introduction

Recently artificial life concept was proposed by
C. Langton and has become one of the most
popular research area as a solution of intelligent
information processing system under uncertain,
complex and dynamic  environment.  The
evolutionary computation based on the natural
selection theory plays an important role in
artificial life. The concept of natural selection has
influenced our view of biological systems
tremendously. Genetic  Algorithms (GAs) are
computational models of living system's evolution
process and population-based optimization
methods. GAs can provide many opportunities for
obtaining a global optimal solution, but the
performance of a system is deterministic
depending on the fitness function given by a
system designer. Thus GAs generally work on
static fitness landscapes. But natural evolution
works on dynamic fitness landscapes that change
over evolutionary time as a result of co-evolution.
And co-evolution between different species or
different organs results in the current state of
complex natural systems. In this point, there is a
growing interest in co-evolutionary systems, where
two populations constantly interact and co-evolve
in contrast with traditional single population
evolutionary algorithms.

In this paper, we derive an extended schema
theorem associated with a host-parasite
co-evolutionary algorithm, where the fitness of a

population changes according to the evolutionary
process of the other population. Host-parasite
co-evolutionary algorithm has two different, still
cooperatively working, populations called as a
host-population and a parasite-population,
respectively. The first one is made up of the
candidates of solution and works the same with
conventional genetic algorithm. The other one, a
parasite-population, is a set of schemata, which is
to find useful schemata called "Building
Block"[1]{2]. Using the conventional genetic
algorithm the host-population is evolved in the
given environment, and the individual of the
host-population is parasitized by a schema in the
parasite-population  evolving to find useful
schemata for the host population. We show why a
co-evolutionary algorithm works better than SGA
and demonstrate the comparative results in solving
a deceptive function. Also we construct the
schema retum map to compare the schema
dynamics.

II. Co-Evolutionary Algorithm and
Extended Schema Theorem

The  theoretical  foundations of  genetic
algorithms rely on a binary string representation
of solutions, and a notion of a schema. Generally
the combined effect of selection, n points
crossover, and mutation on the expected number
of a schema is formulated by[1][2]:
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where f(H, k) is the average fitness of all
strings in the population matched by a schema H,
A k) is the average fitness of all individuals in
the population at generation k, m(H, k) is the
number of instances of a schema H, o(H) is the
order of a schema, J(A) is the defining length

of a schema, and p_, p, are crossover rate and
mutation rate, respectively.

This is known as the Schema Theorem and
means that the short, low-order, above-average
schema, called as the Building Blocks, would

receive an exponentially increasing number of
strings in the next generations. However if there
does not exist a solution in the Building Blocks,
simple genetic algorithm might fail to find that
solution. The deceptive function is most well
known as a problem violating above theorem. T.
Kuo and S.Y. Hwang[3] showed that disruptive
selection works better than directional selection on
the deceptive functions.

In the other hand, natural evolution works on
the fitess landscapes that changes over the
evolutionary time. From this point of view,
co-evolution algorithms have much attractions in
intelligent systems.

Predator-prey relation is the most well-known
example of natural co-evolution. Hillis[4] proposed
this concept with a problem of finding minimal
sorting network for a given number of data. And
co-evolution between neural networks and training
data was proposed in the concept of predator and
prey[5]. And fitness measure in co-evolution is
studied in terms of dynamic fitness landscape. L.
van Valen, a biologist, has suggested that the
"Red Queen effect” arising from co-evolutionary
arms races has been a prime source of
evolutionary innovations and adaptations[6].

Symbiosis is the phenomenon in which
organism of different species live together in close
association, resulting in a raised level of fitness
for one or more of the organisms. In contrast of
predator-prey, this symbiosis has cooperative or
positive  aspects  between  different  species.
Paredis[7] proposed a symbiotic co-evolution in
terms of SYMBIOT, which uses two co-evolving
populations. One population contains permutations
(orderings), the other one consists of solution
candidates to the problem to be solved.

And another approach to symbiotic
co-evolution is host-parasite relation. Just as do
other co-evolutionary algorithms, two co-evolving
populations are used. One is called host
population which consists of the candidates of

solution, the other contains schemata of the
solution space. This idea is based on the Schema
Theorem and the Building Block hypothesis. The
parasite-population searches useful schemata and
delivers  the  genetic  information to  the
host-population by parasitizing process.

In the context of a computational model of
co-evolution, the parasitizing means that the
characters of a string are exchanged by the fixed
characters of a schema. And the other positions
of the string, i.e.,, the same positions of don't-care
symbol in the schema, hold their own values. The
fimess F, of a string y in the parasite-

population is determined as foliows:
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where x; is a randomly sampled string in the
host-population, x,; is a parasitized string that is
a sampled string after parasitized by a schema y,
Rx;, k) is the fitness of a string x; at
generation k, and Ax,, k) is the fitess of a
string  x,.

By exchanging a string x, for x; which is a
string having maximum value of £, , still one of
the strings parasitized by a schema y, the genetic
information acquired by parasitizing is delivered to
the host-population.

If a string y in the parasite-population
represents a schema H, it is clear that the above
parasitizing process can be interpreted, in the
context of useful schemata, as a process of
increasing the number of instances of a schema H
in the host-population. When the co-evolution is
considered the number of instances ' (H, k) of
a schema H in the host-population at the
generation k is expressed by

m' (H, k)= m(H, k) + m(H, k) 4)

where m(H, k) is the original number of
instances of a schema H in the host-population.
And m(H, k) is the increased number of
instances by the parasitizing process and can be
stated as follows:
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where sgn(u) is a sign function that equals +1
for positive u and -1 for negative u. Note that
since we focus on the newly generated instances
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after parasitizing, the case that x; is identified

with x/,;, is excluded from the equation (5).

Also we can formulate the fitness of a schema
H associated with host-parasite co-evolution from

its definition. Let us denote by f '(H, k) the
fitness of a schema H after parasitized. That is
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where [, is a set of instances of a schema

H at the generation & and fH is a index set of
increased instances of a schema M  after
parasitized. Combining the above equations, the
schema theorem can be rewritten by

m(H. b+ D2 (H, ) - LULE)
c AR
G

cizamCn (). (1)
l—]cn

¢ (l_pc

Since the fitness of a schema H is defined as
the average fitness of all strings in the population
matched by that schema H, the fitness f (H, k)
can be approximated by f'(H,H=AH, 1.
Especially, if the number of strings in the
host-population N;>n, the above approximation
makes sense for the large number of generation
sequences[1].

Consequently we obtain an extended schema
theorem associated with host-parasite co-evolution:
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Compared with the original Schema Theorem
in equation (1), the above equation means that the
short, low-order, above-average schema H would
receive an exponentially increasing number of
strings in the next generation with higher order
than SGA. Additionally the parasitizing process
gives more reliable results in finding an optimal
solution. When the schema containing a solution
does not exist in the population, SGA may fail to
find global optima. In the other hand, because the
useful schema can be found by the
parasite-population, co-evolution gives much more
opportunities to converge to global optima.

IMI. Experiments
A deceptive function is a function for which

SGA is prone to be trapped at a deceptive local
optimum. In this section, we consider only a

false-peaks function which has several deceptive
peaks. If there are ten boolean variable xxy--xy)

which are used as a string, the function and its
fitness are defined as

f = (AN Axg)VOAGATAxg ) (&)
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We plot the landscape of its fitness function
where the horizontal axis is the decimal number
of the binary string. As shown in Fig. 1, there is
one optimal solution which are all 1's. But it is
easy to see that there are several deceptive local
optima including all 0's.
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Fig. 1. Landscape of a false-peaks function in
search space

The population size of SGA is set for 80,
the crossover rate is 0.6, and the mutation rate is
set for 0.02. And the host and parasite-population
sizes of co-evolution are set for 20, and the same
rates of crossover and mutation are used. And the
sampling size is set for 3.
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Fig. 2. Fitness changes

The results are plotted in Fig. 2 which shows
the best individual's fitness versus generation
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when searched by SGA and the host-parasite
co-evolution, respectively. In this results, we can
see that the host-parasite co-evolutionary algorithm
converges to an optimal solution more rapidly
than SGA.

Fig. 3 shows the return map of the useful
schema which starts with 1. As shown in Fig. 3
(a), the instance number of the useful schema
does not converge to a point, but repeats
increasing and decreasing along the stable line in
SGA. This is caused by false peaks which start
with 0. Specially, if the initial population consists
of the deceptive schemata mainly, frequently SGA
fail to find an optimal solution.

In the other hand, the host-parasite co-
evolution gives more reliable guarantee of the
convergence fkrespective of the initial population.
As shown in Fig. 3 (b), even though there exists
a small number of the useful schema 111*******
in the population the number of instances of that
schema increase exponentially. Also it shows that
the instances number of that schema converges to
the maximum number which is the population
size. This results imply that the parasitizing
process plays an important role in escaping the
local optima and reaching global optima rapidly.
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(b) Co-evolution
Fig. 3. Schema return map

IV. Conclusions

In this paper we derived an extended schema
theorem associated with host-parasite co-evolution
and showed some comparative results. Even
though the original Schema Theorem and the
Building Block  Hypothesis give theoretical
foundations to SGA, some problems, such as
deceptive functions, are hard to be solved by
SGA. But co-evolutionary algorithm where two
populations  constantly  interact and  evolve
cooperatively in contrast with traditional single
population evolutionary algorithms solved those
problems more reliably. Also it gives much more
chances to find global optima than SGA because
the parasite-population searches the schema space.
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