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Abstract

Evolutionary Algorithms(EAs) are population-based optimization methods based on
the principle of Darwinian natural selection. T he representative methodology in EAs
is genetic algorithm (GA) proposed by J. H. Holland, and the theoretical foundations
of GA are the Schema Theorem and the Building Block Hypothesis. In the meaning
of these foundational concepts, simple genetic algorithm (SGA) allocate more trials to
the schemata whose average fitness remains above average. Although SGA does
well in many applications as an optimization method, still it does not guarantee the
convergence of a global optimum in GA-hard problems and deceptive problems.
Therefore as an alternative scheme, there is a growing interest in a co-evolutionary
system, where two populations constantly interact and co-evolve in contrast with
traditional single population evolutionary algorithm. In this paper we show why the
co- evolutionary algorithm works better than SGA in terms of an extended schema
theorem. And predator-prey co-evolution and symbiotic co-evolution, typical
approaching methods to co-evolution, are reviewed, and dynamic fitness landscape
associated with co-evolution is explained. And the experimental results show a
co-evolutionary algorithm works well in optimization problems even though in
deceptive functions.

. Introduction

The concept of natural selection has influenced our view of biological
systems tremendously. And as a result of trying to model the evolutionary
phenomena using computer, evolutionary algorithms came up in 1960s through
1990s. Typically genetic algorithm(GA), genetic programming(GP), evolutionary
strategies(ES), and evolutionary programming(EP) belong to the categories of
EAs, and these have been successfully
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applied to many different applications according to the solution
representation and genetic operators. The genetic algorithm was proposed by
J. H. Holland[1] as a computational model of living system's evolution process
and a population-based optimization method. GA can provide many
opportunities for obtaining a global optimal solution, but the performance of a
system is deterministic depending on the fitness function given by a system
designer. Thus GA generally works on static fitness landscapes.

However natural evolution works on dynamic fithess landscapes that change
over evolutionary time as a result of co-evolution. And co-evolution between
different species or different organs results in the current state of complex
natural systems. In this point, there is a growing interest in co-evolutionary
systems, where two populations constantly interact and co-evolve in contrast
with traditional single population evolutionary algorithms. This co-evolution
method is believed more similar to biological evolution in nature than other
evolutionary algorithms. Generally co-evolution algorithms can be classified
into two categories, which are predator-prey co-evolution[2] and symbiotic
co-evolution[3][4]. And a new fitness measure in co-evolution has been
discussed in terms of "Red Queen effect"[5].

In this paper, we derive a extended schema theorem associated with a
host- parasite co-evolutionary algorithm, where the fithess of a population
changes according to the evolutionary process of the other population. Also
we presents how a symbiotic co-evolutionary algorithm works including
fitness measure. Host-parasite co-evolutionary algorithm has two different,
still cooperatively working, populations called as a host-population and a
parasite- population, respectively. The first one is made up of the candidates of
solution and works the same with conventional genetic algorithm. The other
one, a parasite-population, is a set of schemata, which is to find useful
schemata called "Building Block"[6][7]. Using the conventional genetic
algorithm the host-population is evolved in the given environment, and the
individual of the host-population is parasitized by a schema in the
parasite- population evolving to find useful schemata for the host population.
As a result of co-evolution the optimal solution can be find more reliably in a
short time with a small population than SGA. We show why a
co- evolutionary algorithm works better than SGA and demonstrate the
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comparative results in solving a deceptive function.

In the next section, the simple genetic algorithm and schema theorem are
reviewed, and in section we explain the co-evolutionary algorithm and
derive an extended schema theorem. Then we demonstrate that the
co-evolutionary algorithm with the extended schema theorem works better
than SGA in solving a deceptive function. Finally the paper is closed with
conclusions including some discussions about future research.

. Simple Genetic Algorithm and Schema T heorem [6][7]

A simple genetic algorithm proposed by John Holland is a global search
technique based on Darwin's theory of natural evolution. It uses a population
of genotypes composed of fixed-length binary strings, called chromosome. And
SGA evaluates a population of genotypes with respect to a particular
environment. The environment includes a fitness function that rates the
genotype's viability. Genotypes reproduce proportionally to their relative fitness
using a variety of genetic operators. One operator, termed crossover, uses the
recombination of two parents to construct novel genotypes. The mutation
operator creates new genotypes from a single parent with a probabilistic
alteration.

The theoretical foundations of genetic algorithms rely on a binary string
representation of solutions, and a notion of a schema. A schema is a subset
of the search space, which match it on all positions other than don't care
symbol (*). There are two important schema properties,

order and ddining length. The number of 0 and 1 positions, ie. fixed
positions is called the order of a schema H (denoted by o(H)). And the
ddining length of a schema H is the distance between the first and the last
fixed string positions(denoted by & (H)). For example,

the order of ***Q0**1** is 3, and its defining length is 4. An instance of a
schema H is a bit string which has exactly the same bit values in the same
positions that are fixed bits in H. For example, 1000, 1010, 1100, and 1110 are
instances of schema 1**0.

Another property of a schema is its fithess at generation k, denoted by f(H,
k). It is defined as the average fitness of all strings in the population matched
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by that schema H. Then

X;f(x,k)
f(H,k):W (1)

where f(x k) is the fitness of an instance x of a schema H, and I« is a set
of instances of a schema H at current generation, and m(H k) is the number
of instances of a schema H at generation k. By the effect of the fitness
proportionate selection without crossover and mutation, the expected number
of instances of a schema H in the population can be described as

m(H k+ 1) = —= ()

where f(k) is the average fitness of al individuals in the population at
generation k. Then we can rewrite the above formula taking into account
equation (1):

m(H K+ 1):ﬂ?H(—i;)k)—-m(H,k) 3)

This means that if the fithess of a schema H is above the average fithess
of the population, termed above-average, that schema receives an increasing
number of strings in the next generation, a below-average scheme receives
decreasing number of strings, and an average schema stays on the same
level. In other words, an above-average schema receives an exponentially
increasing number of strings in the next generation.

Now we discuss the effects of crossover and mutation on the expected
number of schemata in the population. It should be clear that the defining
length of a schema plays a significant role in the probability of its destruction
and survival. Thus the probability py of destruction of a schema H under

the uniform crossover is

Pac(H) = pc- (Jﬁ_ﬂ])j (4)

where | is the number of bits in a string, and p,. is the crossover rate.
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Consequently, the probability of schema survival pg(H) is

Psc(H) = 1- p¢- (Jﬁ_ﬂ])j (5)

Because even if a crossover site is selected between fixed positions in a
schema, there is still a chance for the schema to survive, equation (5) should
be modified as follows:

Psc(H) =1- pc%_ﬂ])j (6)

This equation gives a lower bound on the probability pg(H) that will

survive single- point crossover, in other words upper bound on the crossover

loss which is the loss of instances of a schema H resulting from crossover.
And the destructive effects of mutation can be quantified from the mutation

probability p, and the order of a schema H. Since a single mutation is

independent from other mutations, the probability pg,, of a schema H

surviving a mutation is
Pan(H) = (1- pm) ™. 7

Since p,<1, this probability can be approximated by:

Psm(H)=1- py - 0o(H) (8)

From the equations (3), (6), and (8), the combined effect of selection,
crossover, and mutation on the expected number of a schema is formulated
by:

m(H,k+ 1)zi(?'?—bk)— -m(H 1 pC-Tal(_ﬂ%- P o(H) ] ©)

This is known as the Schema Theorem and means that the short,
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low-order, above-average schema, called as the Building Blocks, would
receive an exponentially increasing number of strings in the next generations.
However if there does not exist a solution in the Building Blocks, simple
genetic algorithm might fail to find that solution. The deceptive function is
most well known as a problem violating above theorem. T. Kuo and S.Y.
Hwang[8] showed that disruptive selection works better than directional
selection on the deceptive functions.

In the next section we derive an extended schema theorem associated with
a co-evolutionary algorithm, and show that it covers the deceptive functions.

. Co-Evolution and Extended Schema Theorem

Recently evolutionary algorithms has been widely studied as a new
approach to artificial life and as a function optimization method. All of these
typically work with a single population of solution candidates scattered on the
static landscape fixed by the designer. But in nature, various feedback
mechanisms between the species undergoing selection provide a strong driving
force toward complexity. And natural evolution works on the fitness
landscapes that changes over the evolutionary time. From this point of view,
co- evolution algorithms have much attractions in intelligent systems.

Generally co-evolutionary algorithms can be classified into two categories,
which are predator-prey co-evolution and symbiotic co-evolution. In the next
two sub- sections, we review them in brief.

3.1 Predator-Prey Co-Evolution

Predator-prey relation is the most well-known example of natural
co-evolution. As future generations of predators develop better attacking
strategies, there is a strong evolutionary pressure for prey to defend
themselves better. In such arms races, success on one side is felt by the
other side as failure to which one must respond in order to maintain one's
chances of survival. This, in turn, calls for a reaction of the other side. This
process of co-volution can result in a stepwise increase in complexity of both
predator and prey[2]. Hillis[4] proposed this concept with a problem of finding
minimal sorting network for a given number of data. And co-evolution
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between neura networks and training data was proposed in the concept of

predator and prey[9].

And fithess measure in co-evolution is studied in terms of dynamic fithess
landscape. L. van Valen, a bioogist, has suggested that the "Red Queen
effect" arising from co-evolutionary arms races has been a prime source of
evolutionary innovations and adaptations[5]. This means that the fitness of
one species changes depending on the other species's.

3.2 Symbiotic Co-Evolution

Symbiosis is the phenomenon in which organism of different species live
together in close association, resulting in a raised level of fitness for one or
more of the organisms. In contrast of predator-prey, this symbiosis has
cooperative or positive aspects between different species.

Paredis[3] proposed a symbiotic co-evolution in terms of SYMBIOT, which
uses two co-evolving populations. One population contains permutations
(orderings), the other one consists of solution candidates to the problem to be
solved. A permutation is represented as a vector that describes a reordering
of solution genes. And another approach to symbiotic co-evolution is
host-parasite relation. Just as do other co-evolutionary algorithms, two
co-evolving populations are used. One is called host population which consists
of the candidates of solution, the other contains schemata of the solution
space. This idea is based on the Schema Theorem and the Building Block
hypothesis described in section

The individual of host-population is parasitized by a schema in
parasite- population. By this process, useful schema generates much more
instances in host population at the next generation. We restrict our attention
to this host-parasite relation, to show the effect of

parasitizing mathematically by an extended schema theorem associated with
host- parasite co-evolution.

33 Process d host-parasite Co-Evolution

As above-mentioned, the parasite- population searches useful schemata and
delivers the genetic information to the host-population by parasitizing process.
We explain this parasitizing process by means of fitness measure of the
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parasite- population and the alteration of a string in the host- population
according to the fitness measure.

The fitness of a schema in the parasite-population depends on n strings
sampled in the host-population. In the context of a computational model of
co-evolution, the parasitizing means that the characters of a string are
exchanged by the fixed characters of a schema. And the other positions of the
string, i.e., the same positions of don't-care symbol in the schema, hold their
own values. The process of host-parasite co-evolution, in brief, is that a
useful schema found by the parasite-population is delivered to the
host- population according to the fitness proportionate, and the evolutionary
direction of the parasite-population is determined by the host- population.

The fitness F, of a string y in the parasite-population is determined as

follows:
1. Determine a set of strings of the host-population to be parasitized.
Namely select randomly n strings in the host-population, which are
parasitized by a schemay.

2. Let the sampled strings as xg,--,x,, and the parasitized strings as
Xy, ey X A

parasitized string is a sampled string after parasitized by a schemay.

3. In order to determine the fitness of a string y in the parasite- population,
we set a fithess function of one time parasitizing as improvement
of the fitness.

fy(k)= max [0,f(Xy k) - f(x;,k)] (i= 1,---,n) (10)

where f(x;,k)is the fitness of a string x; at generation k, and f(@,k)

is the fitness of a string x,, which is parasitized by a schemay.

4. Then the fithess F, of a schema y in the parasite- population is
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Fy= 26 (1)

=1
By exchanging a string x; for Q which is a string having maximum
value of f, , still one of the strings parasitized by a schema y, the genetic

information acquired by parasitizing is delivered to the host-population. And
as described in equation (11), the fitness of a schema

in the parasite-population is depending on the parasitized strings in the
host-population. In the next sub-section, we derive an extended schema
theorem associated with this host- parasite co-evolution.

34 Extended schema theorem

If a string y in the parasite-population represents a schema H, it is clear
that the above parasitizing process can be interpreted, in the context of useful
schemata, as a process of increasing the number of instances of a schema H
in the host-population. If we recall the original schema theorem, the number
of instances of a schema H at the generation k is changed by the amount of
newly generated instances of that schema. When the co-evolution is
considered the number of instances m'(H,k) of a schema H in the
host- population at the generation k is expressed by

m'(H,k)= m(H,k)+ m(H, k) (12)

where m(H,k) is the original number of instances of a schema H in the
host - population.

And m(H,k) is the increased number of instances by the parasitizing
process and can be stated as follows:

{sn[f (X3, k) - F(x; K]+ 1} (13)

n
i=

R(H, k) = =

1

where sgn(u) is a sign function that equals +1 for positive u and -1 for
negative u. Note that since we focus on the newly generated instances after
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parasitizing, the case that x; is identified with %z is excluded from the
equation (13). This equation means that since the string x, is exchanged for

%z in the case that the degree of improvement in the fitness is above 0, the

instances of a schema H in the host-population are increased.
Also we can formulate the fitness of a schema H associated with
host-parasite co-evolution from its definition. Let us denote by £ '(H, k) the

fitness of a schema H after parasitized at the generation k. Then

2 Ax, B+ 25 Kxm B

xsly X,€ iy

m(H, )+ m(H, k)

F(H k= (14)

where Iy is a set of instances of a schema H at the generation k and I

is a index set of increased instances of a schema H after parasitized.

Combining the above equations, the schema theorem can be rewritten by

. L SHR [, . H
m(H, e+ D=m (H. ) - = p ber 927 = bu dm] (15)

Since the fitness of a schema H is defined as the average fitness of all
strings in the population matched by that schema H, the fitness f (H, k) of
a schema H after parasitized can be approximated by f '(H,O)=AH.,?.
Especially, if the number of strings in the host-population Ng>»n, the above

approximation makes sense for the large number of generation sequences[6].
Consequently we obtain an extended schema theorem associated with

host-parasite co-evolution that is

~ H.E) o ), .
m(H.E+1) > DnUIk%FmUIkﬂ~~éRM" [l—py lgf b dﬂﬂ. (16)

Compared with the original Schema Theorem in equation (9), the above
equation means that the short, low-order, above-average schema H would
receive an exponentially increasing

number of strings in the next generation with higher order than SGA.
Additionally the parasitizing process gives more reliable results in finding an
optimal solution. Because the parasite-population explores the schema space, a
global optimum could be found more reliably in shorter time than SGA. When
the schema containing a solution does not exist in the population, SGA may
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fail to find global optima. In the other hand, because the useful schema can
be found by the parasite-population, co-evolution gives much more
opportunities to converge to global optima.

In the next section, we compare the performance of host-parasite
co—evolution with that of SGA in solving a deceptive function and structure

optimization of artificial neural network.

IV. Numerical Analysis

4.1 Deceptive function

A deceptive function i1s a function for which SGA is prone to be trapped at
a deceptive local optimum. In this section, we consider only a false-peaks
function which has several deceptive peaks.
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Figure 1. Landscape of a false-peaks function in search space
If there are ten boolean variable xx,--x;, Which are used as a string, the

function and its fitness are defined as

f= (xAxAAxi)V (A X Ay Axpg ) (17)

xf+~~+x'f0 \/ x4+ (1—x)% 4+ (1—2x)°
10 ’ 11

We plot the landscape of its fitness function where the horizontal axis is

Fit( ) = max {\/ (18)

the decimal number of the binary string. As shown in figure 1, there is one
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optimal solution which are all 1’s. But it is easy to see that there are
several deceptive local optima including all O’s. These features imply that
worst solutions have a greater change of being mutated into optimal solutions
and that better solutions are prone to be mutated into local optima. We tested
this problem with SGA and then the host-parasite co-evolution. The
population size of SGA is set for 20, the crossover rate is 0.6, and the
mutation rate is set for 0.02. And the host and parasite-population sizes of
co—evolution are set for 20, respectively, and the same rates of crossover and

mutation are used. And the sampling sizeis set for 3
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Figure 2. Schema changes

The results are plotted in figure 2 which shows the schema changes versus
generation when searched by SGA and the host-parasite co-evolution,
respectively. In this results, we can see that the useful schema which starts
with 1 does not increase in SGA. This is caused by false peaks which start
with 0. Especially whether SGA succeed in finding a optimal solution or not
depends on the randomly generated initial population. Namely, if the initial
population consists of the deceptive schemata mainly, frequently SGA fail to
find a optimal solution.

In the other hand, the host parasite co-evolution gives more reliable

guarantee of the convergence irrespective of the initial population. As shown
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in figure 2, even though there exists a small number of the useful schema
111#=*=x#xx in the initial population the number of instances of that schema
increase exponentially. But the deceptive schema Ox**#xxxx* contained in the
initial population decreases as generations go on. This results imply that the

parasitizing process plays an important role in escaping the local optima.
Another merit of the host-parasite co-evolution is the fast convergence with

small population.
4.2 Structure optimization of Neural Networks

As an application, we apply the co-evolutionary algorithm to optimization of
neural networks which control the inverted penduluml10]. Figure 3 shows the
block diagram of the application and the dynamic equations of inverted
pendulum are

2o
i F+m,/ [ 6 sind— fcosf] (19)

m.+ m,

. —F——m,,lézsinﬁ
gsinf+ cos&[ Mot m, ]

; 4 m ,cos °0
3 mtm,

6= (20)

where m, is the mass of the cart, and m, and 2/ are the mass and the

length of the pole, respectively. When optimizing the structure of neural

networks, the optimal structure is defined as a structure which has minimum

number of hidden nodes and weights while the performance is satisfied. But
input and output neurons are given depending on the task. Therefore we
restrict the search space to hidden nodes and weights, and shows that
conditions in table 1. And we set the control parameters of co-evolution as

follows:
© Host-population size N : 20 o Parasite-population size M : 20
o (Crossover rate p.: 0.8 o Mutation rate p,: 0.002

o Sampling size n for parasitizing : randomly 5
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Figure 3. Block diagram of co-evolution

After 20 generations the minimal structure, which has a hidden node and 5
weights, was found by co-evolutionary algorithm. And figure 4 shows the
mean fitness changes of SGA and host-parasite co-evolutionary algorithm. In
this comparison, we set the population size of SGA for 60, and plot the mean
fitness changes versus evaluation number.

This result means that the instances of above-average schema are
increasing exponentially with higher order than SGA as described in section
1.
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Figure 4. Change of mean fitness



Kwee-Bo and Hyo-Byung Jun 109

V. Conclusion

In this paper we derived an extended schema theorem associated with
host-parasite co—evolution and showed some comparative results. Even though
the original Schema Theorem and the Building Block Hypothesis give
theoretical foundations to SGA, some problems, such as deceptive functions,
are hard to be solved by SGA. But co-evolutionary algorithm where two
populations constantly interact and co-evolve in contrast with traditional single
population evolutionary algorithms solved those problems more reliably. Also it
gives much more chances to find global optima than SGA because the
parasite-population searches the schema space.

In this paper our study is restricted on the host—parasite co-evolution, so
the other co-evolutionary algorithms including predator-prey co—evolution
should be studied in terms of theoretical foundations in the future. It remains
the future works.

VI. References

(1] J. H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor,
MI : Univ. Mich. Press, 1975.

[2] Seth G. Bullock, “Co-Evolutionary Design : Implications for Evolutionary
Robotics,” The 3rd European Conference on Artificial Life, 1975.

[3] Jan Paredis, “Co-evolutionary Computation,” Artificial Life, Vol. 2, No. 4,
pp. 353-375, 1995.

[4] W. Daniel Hillis, "Co-Evolving Parasites Improve Simulated Evolution as
an Optimization Procedure,” Artificial Life II, Vol. X, pp.313-324, 1991.

[5] D. Cliff, G. F. Miller, "Tracking The Red Queen :@ Measurements of
adaptive progress in co-evolution,” COGS Technical Report CSRP363,
Univ. of Sussex, 1995.

(6] Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs,
Second Edition, Springer-Verlag, 1995.

[7]1 Melanie Mitchell, An Introduction to Genetic Algorithms, A Bradford
Book, The MIT Press, 1996.

[8] T. Kuo and S. Y. Hwang, "A Genetic Algorithm with Disruptive
Selection,” IEEE Trans. on Systems, Man, and Cybernetics, Vol. 26, No. 2,



110 Co-Evolutionary Algorithm and Extended Schema Theorem

pp.299-307, 1996.

(9] DW. Lee, HB. Jun, and KW. Sim, "A Co-Evolutionary Approach for
Learning and Structure Search of Neural Networks,” Proc. of KFIS Fall
Conference '97, Vol. 7, No. 2, pp.111-114, 1997.

[10] H.B. Jun, D.J. Kim, and K.W. Sim, "Structure Optimization of Neural
Network using Co-evolution,” Journal of KITE, Vol. 35 No. 4, 1997.

Kwee-Bo Sim

Kwee-Bo Sim received the B.S. and M.S. degrees in
Electronic Engineering from Chung-Ang University,
Seoul, Korea, in 1984 and 1986 respectively, and Ph. D.
degree in Electronic Emgineering from the University of
Tokyo, Japan, in 1990. From 1987 to 1990, he joined
the project of Intelligent Robot System and MEMS at
the Institute of Industrial Science(IIS), the University of
Tokyo. Since 1991, he has been a faculty member of
the School of Electrical and Electronic Engineering at
the Chung-Ang University, where he is currently an
Associate  Professor. His research interests include
Artificial Life, Neuro-Fuzzy and Soft Computing,
Learning and Evolutionary Algorithms, Autonomous
Decentralized  System, Intelligent Robot  System,
Intelligent Control System, and MEMS etc. He is a
member of IEEE, SICE, RSJ, KITE, KIEE, ICASE,
KFIS, and KSIAM.

Hyo-Byung Jun

Hyo-Byung Jun received the B.S.
degree in Department of Control and
Instrumentation Engineering from Chung
-Ang University, Seoul, Korea, in 1997.
He is currently working towards the M.S.
degree in Chung-Ang University. His
research interests are Neural networks,
Neuro-Fuzzy and Soft Computing,
Evolutionary Computation, Artificial Life,
and Robot Vision etc.





