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Ⅰ . Introduction

T he concept of natural selection has influenced our view of biological

sy stem s tremendously . And as a result of trying to model the evolutionary

phenomena using computer , evolutionary algorithms came up in 1960s through

1990s . T ypically genetic algorithm (GA ), genetic programming (GP ), evolutionary

strategies (ES ), and evolutionary programming (EP ) belong to the categories of

EAs, and these have been successfully
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Abstract

Ev olution ary A lg orithm s (EA s ) are populat ion - ba sed opt im ization m eth ods based on

th e principle of Darw inian natural selection . T he representativ e m ethodology in EA s

is gen et ic algorithm (GA ) proposed by J . H . H ollan d, and th e theoretical foun dation s

of GA are the S chem a T h eorem an d th e Building Block Hypothesis . In the m eanin g

of these foundat ional concept s , simple gen et ic alg orithm (S GA ) allocate m ore tr ials t o

th e schem at a w hose av erag e fitnes s r em ain s abov e av erage. Although S GA does

w ell in m any application s as an opt im ization m eth od, st ill it does n ot gu arant ee the

conv erg ence of a global opt im um in GA - hard problem s and decept iv e problem s .

T herefore as an alt ernat iv e sch em e, there is a grow in g int er est in a co- ev olut ionary

sy st em , w here t w o populat ion s con st ant ly int er act an d co- ev olv e in contr ast w ith

tr adition al sin gle populat ion ev olution ary alg orithm . In this paper w e show w hy the

co- ev olut ionary algorithm w ork s bet t er th an S GA in t erm s of an ex t ended sch em a

th eorem . An d predat or - prey co- ev olut ion an d symbiotic co- ev olut ion , typical

approachin g m eth ods to co- ev olution , ar e r eview ed, and dyn am ic fitnes s lan dscape

associat ed w ith co- ev olut ion is ex plained. And the ex perim ent al r esult s sh ow a

co- ev olut ionary alg orithm w ork s w ell in optim izat ion problem s ev en th ou gh in

decept iv e funct ion s .

95



Kwee-Bo and Hyo-Byung Jun

applied to many different applications according to the solution

representation and genetic operators . T he genetic algorithm was proposed by

J . H . Holland[1] as a computational model of living sy stem ' s evolution process

and a population - based optimization method. GA can provide many

opportunit ies for obtaining a global optimal solution, but the performance of a

sy stem is deterministic depending on the fitness function given by a system

designer . T hus GA generally w orks on static fitness landscapes .

However natural evolution w orks on dynamic fitness landscapes that change

over evolutionary time as a result of co- evolution . And co- evolution betw een

different species or different organs result s in the current state of complex

natural systems . In this point , there is a growing interest in co- evolutionary

sy stem s, where tw o populations constantly interact and co- evolve in contrast

with traditional single population evolutionary algorithms. T his co- evolution

method is believed more similar to biological evolution in nature than other

evolutionary algorithms. Generally co- evolution algorithms can be classified

into tw o categories, which are predator - prey co- evolution [2] and symbiotic

co- evolution [3][4]. And a new fitness measure in co- evolution has been

discussed in terms of "Red Queen effect "[5].

In this paper , w e derive a extended schema theorem associated with a

host - parasite co- evolutionary algorithm, where the fitness of a population

changes according to the evolutionary process of the other population . Also

w e presents how a symbiotic co- evolutionary algorithm w orks including

fitness measure. Host - parasite co- evolutionary algorithm has two different ,

st ill cooperatively w orking , populations called as a host - population and a

parasite- population , respectively . T he first one is made up of the candidates of

solution and w orks the same with conventional genetic algorithm . T he other

one, a parasite- population, is a set of schemata, which is to find useful

schemata called "Building Block"[6][7]. Using the conventional genetic

algorithm the host - population is evolved in the given environment , and the

individual of the host - population is parasitized by a schema in the

parasite- population evolving to find useful schemata for the host population .

As a result of co- evolution the optimal solution can be find more reliably in a

short time with a small population than SGA . We show why a

co- evolutionary algorithm works better than SGA and demonstrate the
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comparative result s in solving a deceptive function .

In the next section , the simple genetic algorithm and schema theorem are

review ed, and in section Ⅲ w e explain the co- evolutionary algorithm and

derive an extended schema theorem . T hen w e demonstrate that the

co- evolutionary algorithm with the extended schema theorem w orks better

than SGA in solving a deceptive function . Finally the paper is closed with

conclusions including some discussions about future research .

Ⅱ . S im ple Ge n et ic A lg orit hm an d S c h em a T h e orem [6 ] [7 ]

A simple genetic algorithm proposed by John Holland is a global search

technique based on Darwin ' s theory of natural evolution . It uses a population

of genotypes composed of fixed- length binary strings, called chrom osom e . And

SGA evaluates a population of genotypes with respect to a particular

environment . T he environment includes a fitness function that rates the

genotype ' s viability . Genotypes reproduce proportionally to their relative fitness

using a variety of genetic operator s . One operator , termed cross over, uses the

recombination of two parents to construct novel genotypes . T he m utation

operator creates new genotypes from a single parent with a probabilistic

alteration .

T he theoretical foundations of genetic algorithm s rely on a binary string

representation of solutions , and a notion of a schema . A schema is a subset

of the search space, which match it on all positions other than don 't care

symbol(*). T here are two important schema properties,

order and def ining leng th. T he number of 0 and 1 posit ions, i.e ., fixed

positions is called the order of a schema H (denoted by o(H )). And the

def ining leng th of a schema H is the distance betw een the first and the last

fixed string positions (denoted by δ (H )). For example,

the order of ***00**1** is 3, and it s defining length is 4. An ins tance of a

schema H is a bit string which has exactly the same bit values in the same

positions that are fixed bit s in H . For example, 1000, 1010, 1100, and 1110 are

instances of schema 1**0.

Another property of a schema is it s fitness at generation k , denoted by f (H ,

k ). It is defined as the average fitness of all strings in the population matched
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by that schema H . T hen

f ( H , k) =
x I H

f (x , k)

m ( H , k)
(1)

where f (x ,k ) is the fitness of an instance x of a schema H , and I H is a set

of instances of a schema H at current generation , and m (H ,k ) is the number

of instances of a schema H at generation k . By the effect of the fitness

proportionate selection without crossover and mutation , the expected number

of instances of a schema H in the population can be described as

m ( H , k + 1) =
x I H

f (x , k)

f ( k )
(2)

where f ( k ) is the average fitness of all individuals in the population at

generation k . T hen w e can rewrite the above formula taking into account

equation (1):

m ( H , k + 1) = f ( H , k )
f ( k )

m ( H , k) (3)

T his means that if the fitness of a schema H is above the average fitness

of the population , termed above- averag e , that schema receives an increasing

number of strings in the next generation , a below - averag e scheme receives

decreasing number of strings, and an average schema stays on the same

level. In other w ords, an above - averag e schema receives an exponentially

increasing number of strings in the next generation .

Now w e discuss the effect s of crossover and mutation on the expected

number of schemata in the population . It should be clear that the defining

length of a schema plays a significant role in the probability of it s destruction

and survival. T hus the probability p dc of destruction of a schema H under

the uniform crossover is

p dc ( H ) = p c
( H )

( l - 1) (4)

where l is the number of bit s in a string , and p c is the crossover rate.
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Consequently , the probability of schema survival p sc ( H ) is

p sc ( H ) = 1- p c
( H )

( l - 1)
. (5)

Because even if a crossover site is selected betw een fixed positions in a

schema, there is st ill a chance for the schema to survive, equation (5) should

be modified as follow s :

p sc ( H ) 1 - p c
( H )

( l - 1) . (6)

T his equation gives a low er bound on the probability p sc ( H ) that will

survive single- point crossover , in other words upper bound on the crossover

loss which is the loss of instances of a schema H resulting from crossover .

And the destructive effect s of mutation can be quantified from the mutation

probability p m and the order of a schema H . Since a single mutation is

independent from other mutations , the probability p sm of a schema H

surviving a mutation is

p sm ( H ) = ( 1 - p m ) o( H ) . (7)

Since p m 1 , this probability can be approximated by :

p sm ( H ) 1 - p m o( H ) (8)

From the equations (3), (6), and (8), the combined effect of selection ,

crossover , and mutation on the expected number of a schema is formulated

by :

m ( H , k + 1) f ( H , k)
f ( k )

m ( H , k)[1 - p c
( H )

( l - 1)
- p m o( H )]. (9)

T his is known as the Schema T heorem and means that the short ,
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low - order , above- average schema, called as the Building Blocks , would

receive an exponentially increasing number of strings in the next generations .

However if there does not exist a solution in the Building Blocks , simple

genetic algorithm might fail to find that solution . T he deceptive function is

most well known as a problem violating above theorem . T . Kuo and S .Y.

Hw ang [8] showed that disruptive selection works better than directional

selection on the deceptive functions .

In the next section we derive an extended schema theorem associated with

a co- evolutionary algorithm, and show that it cover s the deceptive functions .

Ⅲ . Co-Evolution and Extended Schema Theorem

Recently evolutionary algorithm s has been widely studied as a new

approach to artificial life and as a function optimization method. All of these

typically work with a single population of solution candidates scattered on the

static landscape fixed by the designer . But in nature, various feedback

mechanisms between the species undergoing selection provide a strong driving

force tow ard complexity . And natural evolution w orks on the fitness

landscapes that changes over the evolutionary time. From this point of view ,

co- evolution algorithms have much attractions in intelligent systems .

Generally co- evolutionary algorithms can be classified into tw o categories ,

which are p redator-p rey co- evolution and sym biotic co- evolution . In the next

tw o sub - sections, w e review them in brief .

3.1 P redator- P rey Co- E volution

Predator - prey relation is the most w ell- known example of natural

co- evolution . As future generations of predators develop better attacking

strategies, there is a strong evolutionary pressure for prey to defend

themselves better . In such arms races, success on one side is felt by the

other side as failure to which one must respond in order to maintain one ' s

chances of survival. T his, in turn, calls for a reaction of the other side. T his

process of co- volution can result in a stepwise increase in complexity of both

predator and prey [2]. Hillis [4] proposed this concept with a problem of finding

minimal sorting network for a given number of data . And co- evolution
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betw een neural networks and training data w as proposed in the concept of

predator and prey [9].

And fitness measure in co- evolution is studied in terms of dynamic fitness

landscape. L. van Valen , a biologist , has suggested that the "Red Queen

effect" arising from co- evolutionary arm s races has been a prime source of

evolutionary innovations and adaptations [5]. T his means that the fitness of

one species changes depending on the other species ' s .

3.2 Symbiotic Co-Evolution

Symbiosis is the phenomenon in which organism of different species live

together in close association , resulting in a raised level of fitness for one or

more of the organism s . In contrast of predator - prey , this symbiosis has

cooperative or positive aspect s between different species .

Paredis [3] proposed a symbiotic co- evolution in terms of SYMBIOT , which

uses two co- evolving populations . One population contains permutations

(orderings ), the other one consist s of solution candidates to the problem to be

solved. A permutation is represented as a vector that describes a reordering

of solution genes . And another approach to symbiotic co- evolution is

host - parasite relation . Just as do other co- evolutionary algorithms, two

co- evolving populations are used. One is called host population which consist s

of the candidates of solution , the other contains schemata of the solution

space. T his idea is based on the Schema T heorem and the Building Block

hypothesis described in section Ⅱ.

T he individual of host - population is parasitized by a schema in

parasite- population . By this process, useful schema generates much more

instances in host population at the next generation . We restrict our attention

to this host - parasite relation , to show the effect of

parasitizing mathematically by an extended schema theorem associated with

host - parasite co- evolution .

3.3 P rocess of hos t-p aras ite Co- E volution

A s above- mentioned, the parasite- population searches useful schemata and

deliver s the genetic information to the host - population by parasitizing process .

We explain this parasitizing process by means of fitness measure of the
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parasite- population and the alteration of a string in the host - population

according to the fitness measure.

T he fitness of a schema in the parasite- population depends on n strings

sampled in the host - population . In the context of a computational model of

co- evolution , the parasitizing means that the characters of a string are

exchanged by the fixed characters of a schema. And the other positions of the

string , i.e., the same positions of don 't- care symbol in the schema, hold their

own values . T he process of host - parasite co- evolution , in brief, is that a

useful schema found by the parasite- population is delivered to the

host - population according to the fitness proportionate, and the evolutionary

direction of the parasite- population is determined by the host - population .

T he fitness F y of a string y in the parasite- population is determined as

follow s:

1. Determine a set of strings of the host - population to be parasitized.

Namely select randomly n strings in the host - population , which are

parasitized by a schema y .

2. Let the sampled strings as x 1 , , x n , and the parasitized strings as

x 1y , , x ny . A

parasit ized string is a sampled string after parasitized by a schema y .

3. In order to determine the fitness of a string y in the parasit e- population ,

w e set a fitness function of one time parasitizing as improvement

of the fitness .

f iy ( k) = max [0 ,f (x iy , k) - f (x i , k) ] ( i= 1, , n ) (10)

where f (x i , k) is the fitness of a string x i at generation k , and f (x iy , k)

is the fitness of a string x iy which is parasit ized by a schema y .

4. T hen the fitness F y of a schema y in the parasite- population is
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F y =
n

i = 1
f iy . (11)

By exchanging a string x i for x iy which is a string having maximum

value of f iy , still one of the strings parasitized by a schema y , the genetic

information acquired by parasitizing is delivered to the host - population . And

as described in equation (11), the fitness of a schema

in the parasite- population is depending on the parasitized strings in the

host - population . In the next sub - section , w e derive an extended schema

theorem associated with this host - parasite co- evolution .

3.4 Ex tended schem a theorem

If a string y in the parasite- population represents a schema H , it is clear

that the above parasitizing process can be interpreted, in the context of useful

schemata, as a process of increasing the number of instances of a schema H

in the host - population . If we recall the original schema theorem , the number

of instances of a schema H at the generation k is changed by the amount of

newly generated instances of that schema. When the co- evolution is

considered the number of instances m ' ( H , k) of a schema H in the

host - population at the generation k is expressed by

m ' ( H , k) = m ( H , k) + m ( H , k) (12)

where m ( H , k) is the original number of instances of a schema H in the

host - population .

And m ( H , k) is the increased number of instances by the parasitizing

process and can be stated as follow s :

m ( H , k) = 1
2

n

i = 1
{sg n [ f ( x iH , k) - f ( x i , k) ] + 1} (13)

where sg n (u) is a sign function that equals +1 for positive u and - 1 for

negative u . Note that since w e focus on the newly generated instances after
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