• 제목/요약/키워드: Similar Trajectory

검색결과 162건 처리시간 0.024초

위치정보 기반의 경로 학습 및 이탈 판단을 위한 소프트 컴퓨팅 기법 (Soft-computing Method for Path Learning and Path Secession Judgment using Global Positioning System)

  • 라혁주;김성주;최우경;전홍태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.144-146
    • /
    • 2004
  • It is known that Global Positioning System(GPS) is the most efficient navigation system because it provides precise position information on the all areas of Earth regardless of metrology. Until now, the size of GPS receivers has become smaller and the performance of receivers has become higher. So receivers provide the position information of not only static system but also dynamic system. Usually, users make similar movement trajectory according to their life pattern and it is possible to build up efficient database by collecting only the repeated users' position. Because position information calculated by the receiver is erroneous about 10-30m within 5% error tolerance, the position information is oscillated even on the same area. In this paper, we propose the system that can estimate whether users are out of trajectory or in dangerous situation by soft-computing method.

  • PDF

HYSPLIT 모형 입력설정에 따른 바람 이동경로 예측 결과 공간 분석 (Spatial Analysis of Wind Trajectory Prediction According to the Input Settings of HYSPLIT Model)

  • 김광수;이승재;박진유
    • 한국농림기상학회지
    • /
    • 제23권4호
    • /
    • pp.222-234
    • /
    • 2021
  • 바람에 의해 해외지역에서 국내로 유입되는 비래해충들은 주요 작물에 상당한 피해를 초래할 수 있다. 바람에 의한 비래해충의 이동 경로를 추정하기 위해 기상 모형들이 사용되는데, 본 연구에서는 비래해충이 도달할 수 있는 지역을 예측할 때 입력설정이 미치는 영향을 분석하였다. 벼멸구가 중국에서 국내로 유입된다는 가정하에 입자의 바람이동 경로를 추적하기 위해 개발된 HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 모형을 사용하여 바람의 이동경로를 예측하였다. 중국, 한국 및 일본이 포함된 중규모 수치기상모형 자료를 사용하여 순간 및 평균 풍속자료가 포함된 기상입력자료를 생성하였다. 또한, 이동 경로 계산을 위해 계산 시간 간격을 1, 30, 60분으로 설정하였다. 중국에서 벼멸구가 관측된 지점에서 2019년과 2021년 6월 상순 기간 동안 바람의 이동 경로를 계산한 결과, 순간 풍속과 평균 풍속자료를 사용함에 따라 비래해충 도달지점에 큰 차이가 나타났다. 계산 시간에 따른 이동 경로 결과값들의 공간적 분포는 상대적으로 유사도가 높았으며, 순간풍속을 사용한 경우 벼멸구 관측지역과 비교적 유사한 경향이 나타났다. 이러한 결과는 바람 경로를 추적하여 비래해충 도착지점을 추정할 때 사용되는 입력자료의 특성을 파악하고 이들로부터 발생하는 불확도에 대한 고려가 필요함을 시사한다.

로봇 매니퓰레이터와 공작물의 상대운동에 의한 위치/힘의 2차원 하이브리드 제어 (Two dimensional hybrid control using the relative motion between the robot manipulator and a workpiece)

  • 진상호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1577-1580
    • /
    • 1997
  • A hybrid control method based on using the relative motion between a manipulator and a workpiece is described for a two-dimensional manipulator, in which it is assumed that there are no collisions between the robot manipulator and the workpiece, and that we use a computed force law which is similar to the computed torque law in the trajectory tracking problem of a robot manipulator. The effectiveness of the proposed hybrid control emthod is illustratec by some simulations.

  • PDF

디지로그 북 저작을 위한 3D 객체의 In-Situ 기반의 이동 궤적 편집 기법 (In-Situ based Trajectory Editing Method of a 3D Object for Digilog Book Authoring)

  • 하태진;우운택
    • 한국HCI학회논문지
    • /
    • 제5권2호
    • /
    • pp.15-24
    • /
    • 2010
  • 디지로그 북(Digilog book)은 기존 서적과 디지털 콘텐츠을 융합함으로써, 아날로그적 감성과 디지털 오감을 함께 제공하는 증강현실기반 차세대 출판물이다. 디지로그 북을 저작할 수 있는 저작 소프트웨어인 아틀렛(ARtalet)은 증강현실 환경에서 3 차원 사용자 인터페이스를 이용한 직관적인 In-Situ 저작 환경을 제공한다. 본 논문은 디지로그 북에 증강된 3D 객체에 이동 경로를 생성하고 조작 할 수 있는, 아틀렛 저작 환경 기반의 이동 궤적 편집 기법을 제안한다. 구체적으로 이동 궤적의 조정점(Control point)을 적절히 할당하기 위해서 3차원 조작도구의 이동 좌표에 대하여 조정점 할당 검사를 한다. 그리고 부드러운 곡선 형태로 이동 궤적을 복원하기 위해서 스플라인을 이용한 보간 과정을 수행한다. 또한 작고 밀집된 이동 궤적의 조정점을 효과적으로 선택하기 위해서 동적 스코어(Score)를 기반으로 한 조정점 선택 방법을 적용한다. 실험 결과 제안한 방법은 기존 방법에 비해 오차와 완료시간은 유의한 차이가 없었지만, 조정점의 수를 약 90% 이상 감소시킬 수 있었다. 이것은 매우 적은 수의 조정점만으로도 이동궤적을 복원할 수 있으며 추후 이동 궤적 조작에 필요한 조정점의 조작 횟수를 대폭 줄일 수 있다는 것을 의미한다. 또한 제안한 방법은 기존의 조정점 조작 방법에 비해 상대적으로 적은 손과 팔의 움직임만으로도 빠르게 이동 궤적의 형태를 변경 할 수 있었다. 본 논문에서 제안한 3D 객체의 이동 궤적 편집 방법은 몰입형 In-Situ 증강현실 환경의 교육, 게임, 디자인, 애니메이션, 시뮬레이션 등의 분야에서 드로잉 또는 곡선 편집 방법으로 응용될 수 있다.

  • PDF

Three Dimensional Measurement of Ideal Trajectory of Pedicle Screws of Subaxial Cervical Spine Using the Algorithm Could Be Applied for Robotic Screw Insertion

  • Huh, Jisoon;Hyun, Jae Hwan;Park, Hyeong Geon;Kwak, Ho-Young
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권4호
    • /
    • pp.376-381
    • /
    • 2019
  • Objective : To define optimal method that calculate the safe direction of cervical pedicle screw placement using computed tomography (CT) image based three dimensional (3D) cortical shell model of human cervical spine. Methods : Cortical shell model of cervical spine from C3 to C6 was made after segmentation of in vivo CT image data of 44 volunteers. Three dimensional Cartesian coordinate of all points constituting surface of whole vertebra, bilateral pedicle and posterior wall were acquired. The ideal trajectory of pedicle screw insertion was defined as viewing direction at which the inner area of pedicle become largest when we see through the biconcave tubular pedicle. The ideal trajectory of 352 pedicles (eight pedicles for each of 44 subjects) were calculated using custom made program and were changed from global coordinate to local coordinate according to the three dimensional position of posterior wall of each vertebral body. The transverse and sagittal angle of trajectory were defined as the angle between ideal trajectory line and perpendicular line of posterior wall in the horizontal and sagittal plane. The averages and standard deviations of all measurements were calculated. Results : The average transverse angles were $50.60^{\circ}{\pm}6.22^{\circ}$ at C3, $51.42^{\circ}{\pm}7.44^{\circ}$ at C4, $47.79^{\circ}{\pm}7.61^{\circ}$ at C5, and $41.24^{\circ}{\pm}7.76^{\circ}$ at C6. The transverse angle becomes more steep from C3 to C6. The mean sagittal angles were $9.72^{\circ}{\pm}6.73^{\circ}$ downward at C3, $5.09^{\circ}{\pm}6.39^{\circ}$ downward at C4, $0.08^{\circ}{\pm}6.06^{\circ}$ downward at C5, and $1.67^{\circ}{\pm}6.06^{\circ}$ upward at C6. The sagittal angle changes from caudad to cephalad from C3 to C6. Conclusion : The absolute values of transverse and sagittal angle in our study were not same but the trend of changes were similar to previous studies. Because we know 3D address of all points constituting cortical shell of cervical vertebrae. we can easily reconstruct 3D model and manage it freely using computer program. More creative measurement of morphological characteristics could be carried out than direct inspection of raw bone. Furthermore this concept of measurement could be used for the computing program of automated robotic screw insertion.

남자 고등부 포환던지기 선수들의 연도 별 기록에 따른 글라이드와 딜리버리 국면의 운동학적 차이 (The Analysis of Kinematic Difference in Glide and Delivery Phase for the High School Male Shot Putter's Records classified by Year)

  • 박재명;장재관;김태삼
    • 한국운동역학회지
    • /
    • 제23권4호
    • /
    • pp.295-306
    • /
    • 2013
  • The purpose of this study was to provide high school male shot putters training methods of gliding and delivery motion through comparative analysis of kinematic characteristics. To accomplish this purpose, three dimensional motion analysis was performed for the subjects(PKC, KKH, YDL) who participated in high school male shot putter competition on 92nd (2011), 93rd (2013) National Sports Festival. The subjects were filmed by four Sony HXR-MC2000 video cameras with 60 fields/s. The three-dimensional kinematic data of the glide, conversion and delivery phase were obtained by Kwon3d 3.1 version. The data of the shoulder rotational angles and projection angles were calculated with Matlab R2009a. The following conclusions had been made. With the analysis of the gliding and stance length ratio, the gliding length was shorter at the TG than the SG with short-long technique but the gliding and stance length ratio was 46.8:53.2% respectively. The deviation of the shots trajectory from APSS(Athlete-plus-shot-system) revealed that the PKC showed similar to "n-a-b-c-I" of skilled S-shape type, KKH and YDL showed "n-a-d-f-I'" of unskilled type. Furthermore, they showed smaller radial distance from the central axis of the APSS and the shots were away from the linear trajectory. From this characteristics, The PKC who performed more TG than SG had shorter glide with S-shape of APSS(skilled type) showed the better record than others with technical skill. But KKH and YDL had bigger glide ratio with "n-a-d-f-I'" of unskilled type and improved their records with technical factor. The projection factor had an effect on the record directly. Because PKC maintained more lower glide and transition posture with momentum transfer through COG's rapid horizontal velocity respectively the subject possessed the characteristics of high horizontal and vertical velocity with large turning radius from shot putter to APSS.

운동량제어 수소제트가 부양제트로 천이되는 현상에 대한 실험적 연구 (An Experimental Study on the Transition of Momentum Controlling Hydrogen Jet to Buoyant Jet)

  • 원상희;정석호;김종수
    • 한국수소및신에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2005
  • Transition of momentum-controlling hydrogen jet to buoyant jet is experimentally investigated in order to develop a prediction model for the moving trajectory of hydrogen leaked from hydrogen devices. In the experiments, room-temperature helium, that has a similar density to the hydrogen leaked from high pressure tank, is horizontally injected through a 4mm tube and its moving trajectory is visualized by the shadowgraph method. The moving trajectories are found to be parabolic, thereby exhibiting increasing influence of the buoyancy. In analyzing the experimental results, the vertical movement is assumed to be controlled by the buoyancy while the horizontal movement is controlled by the air entrainment caused by the initial momentum. The resealing based on this assumption yields a single curve fitting to the all experimental results.

Experimental study on human arm motions in positioning

  • Shibata, S.;Ohba, K.;Inooka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.212-217
    • /
    • 1993
  • In this paper, characteristics of the motions of a human arm are investigated experimentally. When the conditions of the target point are restricted, human adjusts its trajectory and velocity pattern of the arm to fit the conditions skillfully. The purpose of this work is to examine the characteristics of the trajectory, velocity pattern, and the size of the duration in the following cases. First, we examine the case of point-to-point motion. The results are consistent with the minimum jerk theory. However, individual differences in the length of the duration can be observed in the experiment. Second, we examine the case which requires accuracy of positioning at the target point. It is found that the velocity pattern differs from the bell shaped pattern explained by the minimum jerk theory, and has its peak in the first half of the duration. When higher accuracy of the positioning is required, learning effects can be observed. Finally, to examine the case which requires constraint of the arm posture at the target point, we conduct experiments of a human trying to grasp a cup. It is considered that this motion consists of two steps : one is the positioning motion of the person in order to start the grasping motion, the other is the grasping motion of the human's hand approaching toward the cup and grasping it. In addition, two representative velocity patterns are observed : one is the similar velocity pattern explained in the above experiment, the other is the velocity pattern which has its relative maximum in the latter half of the duration.

  • PDF

모바일 로봇의 목표물 추적을 위한 이미지 궤환 제어 (A Image Feedback control of Mobile Robot for Target Tracking)

  • 황원준;이우송
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.90-98
    • /
    • 2015
  • This research propose with image-based visual a new approach to design a feedback control of mobile robot. because mobile robot must be recharged periodically, it is necessary to detect and move to docking station. Generally, laser scanner is used for detect of position of docking station. CCD Camera is also used for this purpose. In case of using camera, the position-based visual servoing method is widely used. But position-based visual servoing method requires the accurate calibration and it is hard and complex work. Another method using cameras is inmage-based visual feedback. Recently, image based visual feedback is widely used for robotic application. But it has a problem that cannot have linear trajectory in the 3-dimensional space. Because of this weak point, image-based visual servoing has a limit for real application. in case of 2-dimensional movement on the plane, it has also similar problem. In order to solve this problem, we point out the main reason of the problem of the resolved rate control method that has been generally used in the image-based visual servoing and we propose an image-based visual feedback method that can reduce the curved trajectory of mobile robot in th cartesian space.

Fuzzy-Sliding Mode Control of a Polishing Robot Based on Genetic Algorithm

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.580-591
    • /
    • 2001
  • This paper proposes a fuzzy-sliding mode control which is designed by a self tuning fuzzy inference method based on a genetic algorithm. Using the method, the number of inference rules and the shape of the membership functions of the proposed fuzzy-sliding mode control are optimized without the aid of an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. It is further guaranteed that the selected solution becomes the global optimal solution by optimizing Akaikes information criterion expressing the quality of the inference rules. In order to evaluate the learning performance of the proposed fuzzy-sliding mode control based on a genetic algorithm, a trajectory tracking simulation of the polishing robot is carried out. Simulation results show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the trajectory control result is similar to the result of the fuzzy-sliding mode control which is selected through trial error by an expert. Therefore, a designer who does not have expert knowledge of robot systems can design the fuzzy-sliding mode controller using the proposed self tuning fuzzy inference method based on the genetic algorithm.

  • PDF