• Title/Summary/Keyword: Silver nitrate solution

Search Result 81, Processing Time 0.024 seconds

Synthesis of Ag Nanopowder for Low Temperature Heat Treatment Prepared by Liquid Phase Reduction Method (액상환원법에 의한 저온 열처리용 Ag 나노분말의 합성)

  • Lee, Jong-Kook;Choi, Nam-Kyu;Song, Dae-Sung;Yang, Gon-Seung;Seo, Dong-Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.4
    • /
    • pp.242-246
    • /
    • 2005
  • Silver nanoparticles were synthesized by liquid phase reduction method from aqueous silver nitrate solution and borohybride as a reduction agent. The morphology, particle size and shape were influenced by the reaction conditions such as the concentration of $AgNO_3$, a reduction agent and addition of surfactant. The particle size decreased with decreasing the concentration of silver nitrate and using a borohydride. The obtained Ag particles showed the spherical shape with the range of 10-20 nm.

Efficiency of Silver Ion-Silica Solid Phase Extraction for Elimination of Sulfur Compounds during Pesticide Multiresidue Analysis in Allium Species (파속류의 잔류농약분석과정에서 silver ion-silica solid phase extraction에 의한 황화합물의 제거 효율성)

  • Park, Jin-Woo;Moon, Kyung-Mi;Choi, Young-Whan;Lee, Young-Guen
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.60-65
    • /
    • 2010
  • Since organic sulfur compounds respond to GC/ECD sensitively, they interfere with quantitative separation of pesticides during residual pesticide analysis of Allium species. In this study, it was intended to develop a rapid and simple method for pesticide multi-residues analysis through clean-up and interferences by a solid-phase extraction (SPE). An SPE method employing silver nitrate impregnated Florosil cartridge was developed and evaluated for the elimination of sulfur compounds from the test solution of Allium species during pesticide residues analysis. The silver nitrate impregnated Florosil cartridge was prepared by efflux of 3 ml of 20% silver nitrate solution through Florosil cartridge (1 g packing, 6 ml tube). The extracts equivalent to 2, 4 6, and 10 g of each sample were loaded onto the cartridge and allowed to exude, and then the exudations were analyzed by GC/ECD. More than 95% of sulfur compounds were removed from the loaded extracts equivalent, up to 6 g in onion, 4 g in spring onion and 4 g in shallot, respectively. 40 pesticides were spiked in the Allium species and loaded onto the cartridge to determine the recoveries; from this, the recoveries of 34 pesticides were within 70~120%.

A Study on Synthesis and Dispersion of Silver Nano Particle Using Trisodium Citrate (Trisodium Citrate을 이용한 은 나노입자의 합성 및 분산성에 관한 연구)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.772-779
    • /
    • 2016
  • Silver nanoparticles were prepared by reacting silver nitrate and trisodium citrate in an aqueous solution. Their size and shape were investigated by scanning electron microscopy (SEM). The synthesis was carried with different silver nitrate concentration, addition of TSC, solvent, surfactant, ultrasonication, and dispersing agent. With higher concentration of silver nitrate or TSC, the particles became large or agglomerated. The SEM results showed that the nanoparticles have spherical and pseudospherical shape with a narrow size distribution. The hydrophobic solvent did not affect the dispersibility, but the hydrophilic solvent enhanced it. The addition of HPMC surfactant caused the size to increase (50-100 nm) with non-uniform shapes and partial agglomeration. The dispersibility was significantly improved by ultrasonication for over 3 hours after the addition of a dispersing agent. Complete dispersion was achieved by adding the dispersant, and the nanoparticle sizes were as follows: 30-40 nm (BYK-182) < 42-78 nm (BYK-192) < 51-113 nm (BYK-142). The nanoparticles were 38.45-46.28 nm after the addition of 2-4 wt% TSC in 0.002 M silver nitrate solution.

Influence of Sample Preparation Method and Silver Salt Types on MALDI-TOFMS Analysis of Polybutadiene

  • Choi, Sung-Seen;Ha, Sung-Ho
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.108-112
    • /
    • 2008
  • Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of nonpolar polymeric materials is affected by the sample preparation as well as the matrix and cationizing agent. This study examined the influence of silver salt types on the MALDI analysis of polybutadiene (PB). Silver trifluoroacetate (AgTFA), silver benzoate (AgBz), silver nitrate ($AgNO_3$), and silver p-toluenesulfonate (AgTS) were used as the silver salts to compare the MALDI mass spectra of PB. The mixture solution of PB and 2,5-dihydroxybenzoic acid (DHB), as a matrix dissolved in THF, was spotted on the sample plate and dried. A droplet of the aqueous silver salt solution was placed onto the mixture. The mass spectrum with AgBz showed the clear $[M+Ag]^+$ ion distribution of PB while the mass spectrum with AgTFA did not show $[M+Ag]^+$ ions but only silver cluster ions. The mass spectra with $AgNO_3$ and AgTS did not show a clear $[M+Ag]^+$ ion distribution. The difference in the formation of $[M+Ag]^+$ ions of PB depending on the silver salts was attributed to the silver cation transfer reaction between the silver salt and the matrix (DHB). The mass spectrum showed a clear $[M+Ag]^+$ ion distribution of PB when the conjugate acid of the silver salt was less acidic than the matrix.

Removal of Inorganic Odorous Compounds by Scrubbing Techniques using Silver Nano-particles (나노 은 입자 세정법을 이용한 무기 악취물질의 제거)

  • Shin, Seung-Kyu;Huyen, Tran;Song, Ji-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.674-681
    • /
    • 2008
  • Silver as a metal catalyst has been used to remove odorous compounds. In this study, silver particles in nano sizes ($5{\sim}30nm$) were prepared on the surface of $NaHCO_3$, the supporting material, using a sputtering method. The silver nano-particles were dispersed by dissolving $Ag-NaHCO_3$ into water, and the dispersed silver nano-particles in the aqueous phase was applied to remove inorganic odor compounds, $NH_3$ and ${H_2}O$, in a scrubbing reactor. Since ammonia has high solubility, it was removed from the gas phase even by spraying water in the scrubber. However, the concentration of nitrate (${NO_3}^-$) ion increased only in the silver nano-particle solution, implying that the silver nano-particles oxidized ammonia. Hydrogen sulfide in the gas phase was rapidly removed by the silver nano-particles, and the concentration of sulfate (${SO_4}^{2-}$) ion increased with time due to the oxidation reaction by silver. As a result, the silver nano-particles in the aqueous solution can be successfully applied to remove odorous compounds without adding additional energy sources and producing any harmful byproducts.

Silver Immobilization on Honeycomb-patterned Polyvinypyrrolidone thin Films via an Electroless Process

  • Kim, Bong-Seong;Kim, Won-Jung;Kim, Young-Do;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4221-4226
    • /
    • 2011
  • Honeycomb-patterned polyvinypyrrolidone (PVP) thin films coated with nanometer-sized silver particles were prepared using honeycomb-patterned polystyrene (PS) template films fabricated by casting a polystyrene solution under humid condition. Silver was first metallized on the patterned PS films via silver nitrate ($AgNO_3$) reduction using tetrathiafulvalene (TTF) and a small amount of PVP as the reductant and dispersing agent, respectively. The effects of $AgNO_3$, TTF, and PVP solution concentrations during the reduction process in acetonitrile were determined to obtain a uniform silver-coated honeycomb-patterned PS film. Second, the silver-metallized patterned porous PS films were filled with high PVP concentration solutions via the spincoating process. Silver-coated patterned PVP films were obtained by peeling off the PVP layer from the template PS film after drying. The results show that the honeycomb-patterned PVP films uniformly coated with silver particles are conveniently obtained using the silver-coated patterned PS template, although the direct fabrication of these films using water droplets under humid conditions was not feasible because of the water solubility of PVP.

Recovery of Silver from Nitrate Leaching Solution of Silicon Solar Cells (실리콘 태양전지 질산침출액에서 LIX63를 이용한 은(Ag) 회수)

  • Cho, Sung-Yong;Kim, Tae-Young;Sun, Pan-Pan
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.39-45
    • /
    • 2021
  • Spent photovoltaic module is one of the important resource of silver, while related research concerning silver recovery remains limited. In our previous research, HNO3 was utilized to dissolve Ag(I) and Al(III) from the spent silicon solar cells. In order to recover Ag(I) from the leachate of a silicon solar cell, the present study made use of a nitrate solution containing Ag(I) and Al(III), which was subjected to a solvent extraction process with 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX63). Ag(I) was selectively extracted with LIX63 over Al(III) from the nitrate leach solution. Subsequently, quantitative stripping of Ag(I) from the loaded LIX63 was performed by using 20% ammonia water. The McCabe-Thiele plots for the extraction and stripping isotherms of Ag(I) were also constructed. Extraction and stripping simulation tests confirmed an Ag(I) extraction and stripping efficiency of >99.99% and 98.9%, respectively with high purity Ag (99.998%) and Al (99.99%) solution. A process flow sheet for Ag(I) recovery from the nitrate leach solution was proposed.

Evaluation of internal adaptation of dental adhesive restorations using micro-CT

  • Kwon, Oh-Hyun;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • Objectives: The internal adaptation of composite restorations with or without resin modified glass ionomer cement (RMGIC) was analyzed non-destructively using Microcomputed tomography (micro-CT). Materials and Methods: Thirty intact human teeth were used. The specimens were divided into 3 groups. In the control group, the cavities were etched with 10% phosphoric acid for 15 sec. Composite resin was filled into the cavity without adhesive. In group 1, light cured glass ionomer cement (GIC, Fuji II LC, GC) was applied as a base. The cavities were then etched, bonded, light cured and filled with composites. In group 2, the cavities were then etched, bonded, light cured and filled with composites without base application. They were immersed in a 25% silver nitrate solution. Micro-CT was performed before and after mechanical loading. One-way ANOVA with Duncan analysis was used to compare the internal adaptation between the groups before or after loading. A paired t-test was used to compare internal adaptation before and after mechanical loading. All statistical inferences were made within the 95% confidence interval. Results: The silver nitrate solution successfully penetrated into the dentinal tubules from the pulp spaces, and infiltrated into the gap between restoration and pulpal floor. Group 2 showed a lower adaptation than the control group and group 1 (p < 0.05). There was no significant difference between the control group and group 1. For all groups, there was a significant difference between before and after mechanical loading (p < 0.05). Conclusions: The internal adaptation before and after loading was better when composites were bonded to tooth using adhesive than composites based with RMGIC.

In vitro protoscolicidal effects of hypertonic glucose on protoscolices of hydatid cyst

  • Hosseini Seyed Vahid;Ghanbarzadeh Kurosh;Barzin Zahra;Sadjjadi Seyed Mahmoud;Tanideh Nader;Mehrabani Davood
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.3
    • /
    • pp.239-242
    • /
    • 2006
  • To evaluate the protoscolicidal effects of various concentrations of hypertonic glucose, live protoscolices of sheep were exposed to 10%, 15%, 25% and 50% glucose solutions. Cetrimide (0.5%), silver nitrate (0.5%) and hypertonic saline (20%) were used as positive controls, while physiological saline was used as a negative control. After 1, 2 and 5 min, the protoscolicidal effects were determined by 1 % eosin. A 25% glucose solution had no significant protoscolicidal effect. However, a 50% glucose solution revealed higher protoscolicidal effect than 0.5% silver nitrate but weaker effect than 0.5% cetrimide; the effect was comparable with that of 20% hypertonic saline. The results showed that hypertonic glucose solution is highly effective in killing protoscolices of Echinococcus granulosus in vitro.

A STUDY ON THE GALVANIC CURRENT BETWEEN GOLD AND AMALGAM (아말감과 금합금의 Galvanic 전류 측정에 관한 실험적 연구)

  • Kim, Yeoung-Nam;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.10 no.1
    • /
    • pp.63-70
    • /
    • 1984
  • It was the purpose of this study to determine the galvanic current between a gold alloy inlay and four types of amalgam using the circuit through pulp chambers when the freshly extracted teeth with those restorations were brought into contact in a physiologic saline solution, and to investigate the effectiveness of cavity varnish or ammonated silver-nitrate on the surface of amalgam restoration in reducing galvanic current. The current was measured with current-to-voltage converter and recored on a physiograph 6630-257. The following results were obtained. 1. Generally, galvanic current decreased as the time elapsed. 2. Galvainc current decreased significantly in the first day and after then minimal change was observed until 30th day. 3. Initial galvanic current was 29.6 ${\mu}A$ in the cut amalgam and 24.5 ${\mu}A$ in Dispersalloy amalgam and after then the current was significantly decreased. 4. Initial galvanic current was 12.6 ${\mu}A$ in spherical amalgam (low copper amalgam) and 13.8 ${\mu}A$ in Tytin amalgam and the amount of change was lower in sperical amalgam and Tytin amalgam than that in lathe cut amalgam and Dispersalloy amalgam. 5. Painting ammoniated silver-nitrate or Copalite on the surface of amalgam resotration decreased initial galvanic current and ammoniated silver-nitrate is more effective in decreasing galvanic current than Copalite. 6. Galvanic current by contact between amalgam restoration and gold restoration increased abruptly and dropped rapidly becoming almost.

  • PDF