• Title/Summary/Keyword: Silver nanoparticles

Search Result 383, Processing Time 0.02 seconds

Formation of Carboxymethyl Cellulose Hydrogel Containing Silver Nanoparticle (은 나노입자를 함유하는 카르복시메틸 셀룰로오스 하이드로겔 제조)

  • Park, Jong-Seok;Kuang, Jia;Gwon, Hui-Jeong;Lim, Youn-Mook;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.353-357
    • /
    • 2010
  • Silver nanoparticles (AgNPs) can be used in the areas such as integrate circuit, cell electrode and antimicrobial deodorant. In this study, AgNPs have been prepared by using $AgNO_3$ aqueous solution in the carboxymethyl cellulose (CMC) hydrogel. CMC powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make CMC hydrogel. CMC hydrogels were dipped into $1.0{\times}10^{-2}M$ $AgNO_3$ solution for 1 hour. After that, the swollen hydrogels were irradiated by gamma-ray for the formation of AgNPs. The characteristics of silver nanoparticles in the CMC hydrogels were monitored by UV-Vis and the morphological study and dispersed coefficient of particles were investigated by FE-SEM/EDX. It was observed that the sodium salt in the CMC is crucial to the formation of silver nanoparticle. Finally, antibacterial tests indiacted that the hydrogel containing silver nanoparticle has antibacterial activity.

Preparation of Coating Film with Antibacterial and Antifogging Function on PET Substrate (PET 기재 위에 항균성과 김서림 방지 기능을 갖는 코팅 도막 제조)

  • Ho Chan Kwon;Ki Chang Song
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.439-445
    • /
    • 2023
  • In this study, silver nanoparticles were synthesized by reducing silver nitrate with PVA, and the solution prepared by adding carboxymethyl cellulose (CMC) to the silver nanoparticles was coated on a PET substrate to prepare a coating film with antibacterial and antifogging function. When the coating films were in contact with water vapor at 80 ℃, the uncoated PET substrate was blurred due to the scattering of light due to the occurrence of fog, while the coating film coated with silver nanosol with CMC remained transparent despite contact with water vapor, showing excellent antifogging function. In addition, the antibacterial properties of the coating films were measured by film adhesion method for Staphylococcus aureus, gram-positive bacteria, and Escherichia coli, gram-negative bacteria. The uncoated PET substrate showed a large number of colonies of Staphylococcus aureus and Escherichia coli, while the coating film coated with the silver nanosol greatly inhibited the growth of Staphylococcus aureus and Escherichia coli, resulting in excellent antibacterial effect.

Fusarium mangiferae as New Cell Factories for Producing Silver Nanoparticles

  • Hamzah, Haider M.;Salah, Reyam F.;Maroof, Mohammed N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1654-1663
    • /
    • 2018
  • Finding a safe and broad-spectrum medication is a goal of scientists, pharmacists, and physicians, but developing and fabricating the right medicine can be challenging. The current study describes the formation of silver nanoparticles (AgNPs) by Fusarium mangiferae. It involves the antibiofilm activity of the nanoparticles against Staphylococcus aureus. It also involves cytotoxic effect against mammalian cell lines. Well-dispersed nanoparticles are formed by F. mangiferae. The sizes of the nanoparticles were found to range from 25 to 52 nm, and UV-Vis scan showed absorption around 416-420 nm. SEM, TEM, and AFM results displayed spherical and oval shapes. Furthermore, the FTIR histogram detected amide I and amide II compounds responsible for the stability of AgNPs in an aqueous solution. AgNPs were observed to decrease the formation of biofilm at 75% (v/v). DNA reducing, smearing, and perhaps fragmentation were noticed after treating the bacterial cells with 50% (v/v). Additionally, cell lysis was detected releasing proteins in the supernatant. It was also observed that the AgNPs have the ability to cause 59% cervical cancer cell line (HeLa) deaths at 25% (v/v), however, they showed about 31% toxicity against rat embryo fibroblast transformed cell lines (REF). The results of this study prove the efficiency of AgNPs as an antibiofilm against S. aureus, suggesting that AgNPs could be an alternative to antibiotics. It must also be emphasized that AgNPs displayed cytotoxic behavior against mammalian cell lines. Further studies are needed for assessing risk in relation to the possible benefit of prescribing AgNPs.

Isolation and Characterization of Bacterial Cellulose-Producing Bacteria for Silver Nanoparticle Synthesis (은 나노입자 합성을 위한 Bacterial Cellulose 생산 세균의 분리 및 특성)

  • Yoo, Ji-Yeon;Jang, Eun-Young;Son, Yong-Jun;Park, Soo-Yeun;Son, Hong-Joo
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.120-126
    • /
    • 2018
  • As a basic study for environment-friendly production of bacterial cellulose (BC) dressing with antimicrobial activity, we isolated and identified acetic acid bacteria which are resistant to silver ions and can biosynthesize silver nanoparticles. Furthermore, conditions of BC production by selected strain were also investigated. Strain G7 isolated from decayed grape skin was able to grow in the presence of 0.1 mM $AgNO_3$ which was identified as Acetobacter intermedius based on 16S rRNA gene analysis. BC production was the highest in a medium containing 2% glucose as a carbon source, 2% yeast extract as a nitrogen source, and 0.115% acetic acid as a cosubstrate. Structural properties of BC produced in optimal medium were studied using Fourier-transform infrared spectroscopy and X-ray diffractometer, and it was found that BC produced was cellulose type I that was the same as a typical native cellulose. When strain G7 was cultured in an optimal medium containing 0.1 mM $AgNO_3$, the color of the culture broth turned into reddish brown, indicating that silver nanoparticles were formed. As a result of UV-Vis spectral analysis of the culture, it was found that a unique absorption spectrum of silver nanoparticles at 425 nm was also observed. Scanning electron microscopic observations showed that silver nanoparticles were formed on the surface and pores of BC membrane.

Bactericidal Application and Cytotoxic Activity of Biosynthesized Silver Nanoparticles with an Extract of the Red Seaweed Pterocladiella capillacea on the HepG2 Cell Line

  • El Kassas, Hala Yassin;Attia, Azza Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1299-1306
    • /
    • 2014
  • Background: Nano-biotechnology is recognized as offering revolutionary changes in various fields of medicine. Biologically synthesized silver nanoparticles have a wide range of applications. Materials and Methods: Silver nanoparticles (AgNPs) were biosynthesized with an aqueous extract of Pterocladiella (Pterocladia) capillacea, used as a reducing and stabilizing agent, and characterized using UV-VIS spectroscopy, Fourier Transform Infra red (FT-IR) spectroscopy, transmission electron microscopy (TEM) and energy dispersive analysis (EDX). The biosynthesized AgNPs were tested for cytotoxic activity in a human hepatocellular carcinoma ($HepG_2$) cell line cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, 1% antibiotic and antimycotic solution and 2 mM glutamine. Bacterial susceptibility to AgNPs was assessed with Staphylococcus aureus, Bacillus subtilis [Gram+ve] and Pseudomonas aeruginosa and Escherichia coli [Gram-ve]. The agar well diffusion technique was adopted to evaluate the bactericidal activity of the biosynthesized AgNPs using Ampicillin and Gentamicin as gram+ve and gram-ve antibacterial standard drugs, respectively. Results: The biosynthesized AgNPs were $11.4{\pm}3.52$ nm in diameter. FT-IR analysis showed that carbonyl groups from the amino acid residues and proteins could assist in formation and stabilization of AgNPs. The AgNPs showed potent cytotoxic activity against the human hepatocellular carcinoma ($HepG_2$) cell line at higher concentrations. The results also showed that the biosynthesized AgNPs inhibited the entire panel of tested bacteria with a marked specificity towards Bacillus subtillus. Conclusions: Cytotoxic activity of the biosynthesized AgNPs may be due to the presence of alkaloids present in the algal extract. Our AgNPs appear more bactericidal against gram-positive bacteria (B. subtillus).

MWCNT, silver nanoparticles, CuBTC를 사용한 염소 이온 센서 합성

  • Gwak, Byeong-Gwan;Park, Su-Bin;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.101-101
    • /
    • 2018
  • Quantitative measurement of chloride ion concentration has an important role in various fields of electrochemistry, medical science, biology, metallurgy, architecture, etc. Among them, its importance of architecture is ever-growing due to unexpected degradations of building structure. These situations are caused by corrosion of reinforced concrete (RC) structure of buildings. And chloride ions are the most powerful factors of RC structure corrosion. Therefore, precise inspection of chloride ion concentration must be required to increase the accuracy of durability monitoring. Multi-walled Carbon nanotubes (MWCNTs) have high chemical resistivity, large surface area and superior electrical property. Thus, it is suitable for the channels of electrical signals made by the sensor. Silver nanoparticles were added to giving the sensing property. CuBTC, one of the metal organic frameworks (MOFs), was employed as a material to improve the sensing property because of its hydrophilicity and high surface area to volume ratio. In this study, sensing element was synthesized by various chemical reaction procedures. At first, MWCNTs were functionalized with a mixture of sulfuric acid and nitric acid because of enhancement of solubility in solution and surface activation. And functionalized MWCNTs, silver nanoparticles, and CuBTC were synthesized on PTFE membrane, one by one. Electroless deposition process was performed to deposit the silver nanoparticles. CuBTC was produced by room temperature synthesis. Surface morphology and composition analysis were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), respectively. X-ray photoelectron spectroscopy (XPS) was also performed to confirm the existence of sensing materials. The electrical properties of sensor were measured by semiconductor analyzer. The chloride ion sensing characteristics were confirmed with the variation of the resistance at 1 V.

  • PDF

Fabrication of Amino Acid Based Silver Nanocomposite Hydrogels from PVA- Poly(Acrylamide-co-Acryloyl phenylalanine) and Their Antimicrobial Studies

  • Cha, Hyeong-Rae;Babu, V. Ramesh;Rao, K.S.V. Krishna;Kim, Yong-Hyun;Mei, Surong;Joo, Woo-Hong;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3191-3195
    • /
    • 2012
  • New silver nanoparticle (AgNP)-loaded amino acid based hydrogels were synthesized successfully from poly (vinyl alcohol) (PVA) and poly(acryl amide-co-acryloyl phenyl alanine) (PAA) by redox polymerization. The formation of AgNP in hydrogels was confirmed by using a UV-Vis spectrophotometer and XRD. The structure and morphology of silver nanocomposite hydrogels were studied by using a scanning electron microscopy (SEM), which demonstrated scattered nanoparticles, ca. 10-20 nm. Thermogravimetric analysis revealed large differences of weight loss (i.e., 48%) between the prestine hydrogel and silver nanocomposite. The antibacterial studies of AgNP-loaded PAA (Ag-PAA) hydrogels was evaluated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. These Ag-PAA hydrogels showed significant activities against all the test bacteria. Newly developed hydrogels could be used for medical applications, such as artificial burn dressings.

Discrete Dipole Approximation Calculation of the Extinction Spectra of Gold-Silver Alloy Nanoparticles (이산 쌍극자 근사를 이용한 금-은 합금 나노입자의 소광 스펙트럼 계산)

  • Lee, Hee-Mi;Chandra, Saha Leton;Jang, Joon-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.136-140
    • /
    • 2007
  • By using the discrete-dipole approximation, we computed the extinction spectrum of a gold-silver alloy nanoparticle. We have examined how the surface plasmon resonance changes with respect to the variation in the composition of the alloy particle. As the fraction of silver increases for a 10nm particle, the peak position of the extinction spectrum blue-shifts linearly. The intensity of the peak however increases exponentially with increasing the silver fraction. These results are in accord with the previous experimental results.

Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles

  • Nam, Ki Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.217-223
    • /
    • 2017
  • PURPOSE. This study investigated the effects of silver nanoparticle (SN) loading into hydraulic calcium silicate-based Portland cement on its mechanical, antibacterial behavior and biocompatibility as a novel dental bone substitute. MATERIALS AND METHODS. Chemically reduced colloidal SN were combined with Portland cement (PC) by the concentrations of 0 (control), 1.0, 3.0, and 5.0 wt%. The physico-mechanical properties of silver-Portland cement nanocomposites (SPNC) were investigated through X-ray diffraction (XRD), setting time, compressive strength, solubility, and silver ion elution. Antimicrobial properties of SPNC were tested by agar diffusion against Streptococcus mutans and Streptococcus sobrinus. Cytotoxic evaluation for human gingival fibroblast (HGF) was performed by MTS assay. RESULTS. XRD certified that SN was successfully impregnated in PC. SPNC at above 3.0 wt% significantly reduced both initial and final setting times compared to control PC. No statistical differences of the compressive strength values were detected after SN loadings, and solubility rates of SPNC were below 3.0%, which are acceptable by ADA guidelines. Ag ion elutions from SPNC were confirmed with dose-dependence on the concentrations of SN added. SPNC of 5.0 wt% inhibited the growth of Streptococci, whereas no antimicrobial activity was shown in control PC. SPNC revealed no cytotoxic effects to HGF following ISO 10993 (cell viability > 70%). CONCLUSION. Addition of SN promoted the antibacterial activity and favored the bio-mechanical properties of PC; thus, SPNC could be a candidate for the futuristic dental biomaterial. For clinical warrant, further studies including the inhibitory mechanism, in vivo and long-term researches are still required.

Poly(ethylenimine)-Stabilized Hollow Gold-Silver Bimetallic Nanoparticles: Fabrication and Catalytic Application

  • Shin, Kuan-Soo;Kim, Ji-Hoon;Kim, In-Hyun;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.906-910
    • /
    • 2012
  • Hollow gold-silver bimetallic nanoparticles (AuAg-HNPs) have been synthesized and their optical and structural properties were characterized. Initially Ag nanoparticles (Ag-NPs) were prepared using poly(ethylenimine) (PEI) as a reducing and a stabilizing agent simultaneously. AuAg-HNPs could then be synthesized via galvanic replacement reaction in a PEI aqueous solution by reacting sacrificial Ag template with a precursor compound of Au, i.e., $HAuCl_4$. Due to the presence of abundant amine functional groups in PEI, which could act as the dissolving ligand for AgCl, the precipitation problem of $Ag^+$ in the presence of Cl from $HAuCl_4$ salt was avoided. On this basis, the relatively high concentrations of $HAuCl_4$ and PEI-stabilized Ag nanoparticles could be used for the fabrication of AuAg-HNPs. Because of their increased surface areas and reduced densities, the AuAg-HNPs were expected and confirmed to outperform their solid counterparts in applications such as catalysis for the reduction of 4-nitrophenol in the presence of $NaBH_4$.