Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.3.906

Poly(ethylenimine)-Stabilized Hollow Gold-Silver Bimetallic Nanoparticles: Fabrication and Catalytic Application  

Shin, Kuan-Soo (Department of Chemistry, Soongsil University)
Kim, Ji-Hoon (Department of Chemistry, Soongsil University)
Kim, In-Hyun (Department of Chemistry, Soongsil University)
Kim, Kwan (Department of Chemistry, Seoul National University)
Publication Information
Abstract
Hollow gold-silver bimetallic nanoparticles (AuAg-HNPs) have been synthesized and their optical and structural properties were characterized. Initially Ag nanoparticles (Ag-NPs) were prepared using poly(ethylenimine) (PEI) as a reducing and a stabilizing agent simultaneously. AuAg-HNPs could then be synthesized via galvanic replacement reaction in a PEI aqueous solution by reacting sacrificial Ag template with a precursor compound of Au, i.e., $HAuCl_4$. Due to the presence of abundant amine functional groups in PEI, which could act as the dissolving ligand for AgCl, the precipitation problem of $Ag^+$ in the presence of Cl from $HAuCl_4$ salt was avoided. On this basis, the relatively high concentrations of $HAuCl_4$ and PEI-stabilized Ag nanoparticles could be used for the fabrication of AuAg-HNPs. Because of their increased surface areas and reduced densities, the AuAg-HNPs were expected and confirmed to outperform their solid counterparts in applications such as catalysis for the reduction of 4-nitrophenol in the presence of $NaBH_4$.
Keywords
Au-Ag; Hollow nanoparticles; Poly(ethylenimine); Catalyst; 4-Nitrophenol;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Schwartzberg, A. M.; Oshiro, T. Y.; Zhang, J. Z.; Huser, T.; Talley, C. E. Anal. Chem. 2006, 78, 4732.   DOI
2 Yang, J.; Lee, J.Y.; Too, H. P.; Valiyaveettil, S. J. Phys. Chem. B 2006, 110, 125   DOI
3 Zhang, J. Z. J. Phys. Chem. Lett. 2010, 1, 686.   DOI
4 Chen, J.; McLellan, J. M.; Siekkinen, A.; Xiong, Y.; Li, Z. Y.; Xia, Y. J. Am. Chem. Soc. 2006, 128, 14776.   DOI
5 Sun, Y.; Xia, Y. J. Am. Chem. Soc. 2004, 126, 3892.   DOI
6 Chen, J.; Wiley, B.; McLellan, J.; Xiong, Y.; Li, Z. Y.; Xia, Y. Nano Lett. 2005, 5, 2058.   DOI   ScienceOn
7 Godbey, W. T.; Wu, K. K.; Mikos, A. G. Proc. Natl. Acad. Sci. U S A 1999, 96, 5177.   DOI
8 Sun, X.; Dong, S.; Wang, E. Mater. Chem. Phys. 2006, 96, 29.   DOI
9 Kim, K.; Lee, H. B.; Lee, J. W.; Park, H. K.; Shin, K. S. Langmuir 2008, 24, 7178.   DOI
10 Sun, X.; Dong, S.; Wang, E. Langmuir 2005, 21, 4710.   DOI
11 Kim, K.; Lee, H. B.; Lee, J. W.; Shin, K. S. J. Colloid Interface Sci. 2010, 345, 103.   DOI
12 Shin, K. S.; Kim, J. H. Bull. Korean Chem. Soc. 2011, 32, 2469   DOI
13 Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391.   DOI
14 Hayakawa, K.; Tomokazu, Y.; Esumi, K. Langmuir 2003, 19, 5517.   DOI
15 Lee, K. Y.; Lee, Y. W.; Lee, J. H.; Han, S. W. Colloid Surf. A 2010, 372, 146.   DOI
16 Patra, A. K.; Dutta, A.; Bhaumik, A. Catal. Comm. 2010, 11, 651.   DOI
17 Shin, Y.; Dohnalkova, A.; Lin, Y. J. Phys. Chem. C 2010, 114, 5985.   DOI
18 Rashid, Md. H.; Bhattacharjee, R. R.; Kotal, A.; Mandal, T. K. Langmuir 2006, 22, 7141.   DOI
19 Shukla, S.; Priscilla, A.; Banerjee, M.; Bhonde, R. R.; Ghatak, J.; Satyam, P. V.; Sastry, M. Chem. Mater. 2005, 17, 5000.   DOI
20 Selvakannan, P. R.; Sastry, M. Chem. Comm. 2005, 1684.