Browse > Article
http://dx.doi.org/10.4014/jmb.1806.06023

Fusarium mangiferae as New Cell Factories for Producing Silver Nanoparticles  

Hamzah, Haider M. (Department of Biology, College of Science, University of Sulaimani)
Salah, Reyam F. (Department of Biology, College of Science, Tikrit University)
Maroof, Mohammed N. (Department of Biology, College of Education for Pure Sciences, Tikrit University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.10, 2018 , pp. 1654-1663 More about this Journal
Abstract
Finding a safe and broad-spectrum medication is a goal of scientists, pharmacists, and physicians, but developing and fabricating the right medicine can be challenging. The current study describes the formation of silver nanoparticles (AgNPs) by Fusarium mangiferae. It involves the antibiofilm activity of the nanoparticles against Staphylococcus aureus. It also involves cytotoxic effect against mammalian cell lines. Well-dispersed nanoparticles are formed by F. mangiferae. The sizes of the nanoparticles were found to range from 25 to 52 nm, and UV-Vis scan showed absorption around 416-420 nm. SEM, TEM, and AFM results displayed spherical and oval shapes. Furthermore, the FTIR histogram detected amide I and amide II compounds responsible for the stability of AgNPs in an aqueous solution. AgNPs were observed to decrease the formation of biofilm at 75% (v/v). DNA reducing, smearing, and perhaps fragmentation were noticed after treating the bacterial cells with 50% (v/v). Additionally, cell lysis was detected releasing proteins in the supernatant. It was also observed that the AgNPs have the ability to cause 59% cervical cancer cell line (HeLa) deaths at 25% (v/v), however, they showed about 31% toxicity against rat embryo fibroblast transformed cell lines (REF). The results of this study prove the efficiency of AgNPs as an antibiofilm against S. aureus, suggesting that AgNPs could be an alternative to antibiotics. It must also be emphasized that AgNPs displayed cytotoxic behavior against mammalian cell lines. Further studies are needed for assessing risk in relation to the possible benefit of prescribing AgNPs.
Keywords
Fusarium mangiferae; silver nanoparticles; Staphylococcus aureus; antibiofilm; mammalian cell lines;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. 2015. Silver nanoparticles as potential antibacterial agents. Molecules 20: 8856-8874.   DOI
2 Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. 2011. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2: 445-459.   DOI
3 Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, et al. 2004. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25: 4383-4391.   DOI
4 Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. 2015. Alternative antimicrobial approach: nano-antimicrobial materials. J. Evid. Based Complementary Altern. Med. 2015: 246012.
5 Prabhu S, Poulose EK. 2012. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano. Lett. 2: 32.   DOI
6 Hwang IS, Hwang JH, Choi H, Kim KJ, Lee DG. 2012 . Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol. 61: 1719-1726.   DOI
7 Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662-668.   DOI
8 Salaheldin TA, Husseiny SM, Al-Enizi AM, Elzatahry A, Cowley AH. 2016. Evaluation of the cytotoxic behavior of fungal extracellular synthesized Ag nanoparticles using confocal laser scanning microscope. Int. J. Mol. Sci. 17: 329.   DOI
9 Sriram MI, Kanth SBM, Kalishwaralal K, Gurunathan S. 2010. Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model. Int. J. Nanomedicine. 5: 753-762.
10 Rodriguez-Leon E, Iniguez-Palomares R, Navarro RE, Herrera-Urbina R, Tanori J, Iniguez-Palomares C, et al. 2013. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res. Lett. 8: 318.   DOI
11 Kumar CM, Yugandhar P, Savithramma N. 2016. Biological synthesis of silver nanoparticles from Adansonia digitata L. fruit pulp extract, characterization, and its antimicrobial properties. J. Intercult. Ethnopharmacol. 5: 79-85.   DOI
12 Gopinath PM, Narchonai G, Dhanasekaran D, Ranjani A, Thajuddin N. 2015. Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial pathogens of female infertility cases. Asian J. Pharm. Sci. 10: 138-145.   DOI
13 Basavaraja SS, Balaji SD, Lagashetty AK, Rajasab AH, Venkataraman A. 2008. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull. 43: 1164-1170.   DOI
14 Majeed S, bin Abdullah MS, Nanda A, Ansari MT. 2016. In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999). J. Taibah Univ. Sci. 10: 614-620.   DOI
15 Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 19: 975-983.   DOI
16 Chen M, Yang Z, Wu H, Pan X, Xie X, Wu C. 2011. Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. Int. J. Nanomedicine. 6: 2873-2877.
17 Kiem S, Oh WS, Peck KR, Lee NY, Lee JY, Song JH, et al. 2004. Phase variation of biofilm formation in Staphylococcus aureus by IS2 56 insertion and its impact on the capacity adhering to polyurethane surface. J. Korean Med. Sci. 19: 779-782.   DOI
18 Milanov D, Lazic S, Vidic B, Petrovic J, Bugarski D, Seguljev Z. 2010. Slime production and biofilm forming ability by Staphylococcus aureus bovine mastitis isolates. Acta Vet. Brno. 60: 217-226.   DOI
19 Arora S, Tyagi N, Bhardwaj A, Rusu L, Palanki R, Vig K, et al. 2015. Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis. Nanomedicine 11: 1265-1275.   DOI
20 Stensberg MC, Wei Q, McLamore ES, Porterfield DM, Wei A, Sepulveda MS. 2011. Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine 6: 879-898.   DOI
21 Almofti MR, Ichikawa T, Yamashita K, Terada H, Shinohara Y. 2003. Silver ion induces a cyclosporine a-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome C. J. Biochem. 134: 43-49.   DOI
22 Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, et al. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 112: 13608-13619.   DOI
23 Soni N, Prakash S. 2012. Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol. Res. 110: 175-184.   DOI
24 Mishra A, Tripathy SK, Yun SI. 2011. Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J. Nanosci. Nanotechnol. 11: 243-248.   DOI
25 Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, et al. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 28: 313-318.   DOI
26 Sambale F, Wagner S, Stahl F, Khaydarov RR, Scheper T, Bahnemann D. 2015. Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J. Nanomater. 16: 6.
27 Abdeen SH, Abdeen AM, EI-Enshasy HA, Shereef AAE. 2011. HeLa-S3 cell growth conditions in serum-free medium and adaptability for proliferation in suspension culture. J. Biol. Sci. 11: 124-134.   DOI
28 Gillet JP, Varma S, Gottesman MM. 2013. The clinical relevance of cancer cell lines. J. J. Natl. Cancer Inst. 105: 452-458.   DOI
29 Kaba SI, Egorova EM. 2015. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells. Nanotechnol. Sci Appl. 8: 19-29.
30 Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M. 2008. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci. 4: 141-144.   DOI
31 Dasaratrao Sawle B, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A. 2008. Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci. Technol. Adv. Mater. 9: 035012.   DOI
32 Ingle A, Rai M, Gade A, Bawaskar M. 2009. Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J. Nanopart. Res. 11: 2079-2085.   DOI
33 Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, et al. 2010. A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr. Nanosci. 6: 376-380.   DOI
34 Gaikwad SC, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai M, et al. 2013. Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J. Braz. Chem. Soc. 24: 1974-1982.
35 Gamliel-Atinsky E, Sztejnberg A, Maymon M, Vintal H, Shtienberg D, Freeman S. 2009. Infection dynamics of Fusarium mangiferae, causal agent of mango malformation disease. Phytopathology 99: 775-781.   DOI
36 Omar NH, Mohd M, Nor NM, Zakaria L. 2018. Characterization and pathogenicity of Fusarium species associated with leaf spot of mango (Mangifera indica L.). Microb. Pathog. 114: 362-368.   DOI
37 Kaiser TD, Pereira EM, dos Santos KR, Maciel EL, Schuenck RP, Nunes AP. 2013. Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diagn. Microbiol. Infect. Dis. 75: 235-239.   DOI
38 Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA. 2013. Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf. B Biointerfaces 102: 300-306.   DOI
39 Ahmed AA, Hamzah HM, Maaroof MN. 2018. Analyzing formation of silver nanoparticles from the filamentous fungus Fusarium oxysporum and their antimicrobial activity. Turk. J. Biol. 42: 54-62.   DOI
40 Miller JK, Neubig R, Clemons CB, Kreider KL, Wilber JP, Young GW, et al. 2013. Nanoparticle deposition onto biofilms. Ann. Biomed. Eng. 41: 53-67.   DOI
41 Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318-1322.   DOI
42 Syed MA, Babar S, Bhatti AS, Bokhari H. 2009. Antibacterial effects of silver nanoparticles on the bacterial strains isolated from catheterized urinary tract infection cases. J. Biomed. Nanotechnol. 5: 209-214.   DOI
43 Onasanya A, Mignouna HD, Thottappilly G. 2003. Genetic fingerprinting and phylogenetic diversity of Staphylococcus aureus isolates from Nigeria. Afr. J. Biotechnol. 2: 246-250.   DOI
44 Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T, Rattan A. 2006. Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J. Med. Microbiol. 24: 25-29.   DOI
45 Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS. 2011. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 39: 77-85.
46 Thottappilly G, Mignouna HD, Onasanya A, Abang M, Oyelakin O, Singh NK. 1999. Identification and differentiation of isolates of Colletotrichum gloeosporioides from yam by random amplified polymorphic DNA markers. Afr. Crop Sci. J. 7: 195-205.
47 Betancur-Galvis LA, Saez J, Granados H, Salazar A, Ossa JE. 1999. Antitumor and antiviral activity of Colombian medicinal plant extracts. Mem. Inst. Oswaldo Cruz. 94: 531-535.   DOI
48 Mather JP, Roberts PE. 1998. Introduction to Cell and Tissue Culture: Theory and Technique. pp 180-181. Plenum Press, New York.
49 Duran N, Marcato PD, Alves OL, De Souza GIH, Esposito E. 2005. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotech. 3: 8.   DOI
50 Gurunathan S, Jeong JK, Han JW, Zhang XF, Park JH, Kim JH. 2015. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Lett. 10: 35.   DOI